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Advanced Cyber Attacks in Enterprises

$1.7 million in NFTs stolen in apparent
phishing attack on OpenSea users

/ Two hundred and fifty-four ;ustomers’ names,

tokens were stolen over roughly
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three hours Dple affected
Another T-Mobile cyberattack reportedly
Private insurance companies
report from the GAO

exposed customer info and SIMs
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System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

e e.g., system call syscall_read ()1

Process

File System

syscall=read exit=0x100 a0=0x3 al=... ... pid=12566 auid=chuqiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_ 64




System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

e e.g., system call syscall_read ()1

Process

i \.
* Audit logs can be used for: erce?

v Root cause analysis File System

v Ramification discovery

syscall=read exit=0x100 a0=0x3 al=... ... pid=12566 auid=chuqiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_ 64




Provenance Graph from Audit Logs

1. bash, read, malicious.sh .sh:lmalicious.sh txt || /share/file

2.bash, clone, c¢cp read Mpread

3.cp, read, /etc/passwd cIoneiE :] :
‘ —>

4.cp, write, /share/file bash P nginx

5.nginx, pread, /share/file A’d writevl

6.nginx, writev, 172.26.187.19 | [wt| /etc/passwd @’ 172.26.187.19 [
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Provenance Graph from Audit Logs

1. bash, read, malicious.sh sh [ | malicious.sh txt || /share/file

2.bash, clone, cp - read Mpread
3.¢cp, read, /etc/passwd clone [*** )
4.cp, write, /share/file bash P Agmx

5.nginx, pread, /share/file Md writevl

6.nginx, writev, 172.26.187.19 | [wt| /etc/passwd @’ 172.26.187.19 [

v/ Provenance Graph constructs the overall attack scenario
by combining historic audit logs/




Challenges of Provenance Tracking

Simplified code for a web server program
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Challenges of Provenance Tracking

Simplified code for a web server program

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle reqguested file
int fd = onen(r->req _file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf,
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CAN NOT identify the correct descendant. Dependency Explosion
X No conclusion of TRUE provenance. Problem !




Related Work

* Execution Unit Partitioning [NDSS’13, Security’16, NDSS'21, ...]:
* Partition program into units by instrumentation or built-in application logs
* Intrusive to program or error-prone units

* Causality Inference [AsPLOS’16, NDSS'18, ...]:

* Train a causality model based on dual execution to infer true dependencies
* Inadequate for high-concurrency programs

* Record-and-Replay [ccs'17, Security’18, ...]:

* Record non-deterministic program behaviors and replay with taint analysis
* Fine-grained but intrusive to program, and incur high overhead



@ Ideal Solution:

* Non-intrusive to program (i.e., instrumentation free)
* Fine-grained (i.e., pinpoint dependency) provenance




Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance

X NO fine-grained provenance (program data flow) iy
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Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance
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. QMotivation: Enhance audit logs with program data flow to achieve
high system observability




Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance
X NO fine-grained provenance (program data flow)
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Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:




Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:
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Control flow tracing: trace
runtime execution history

\&/
Data flow analysis: recover
syscall-to-syscall taints

2/
Optimization: incorporate

audit logs with the taints
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Our Key Idea

(D Control flow tracing @ Data flow analysis
Online program runtime recording Offline computationally expensive analysis
ansight: Hardware Tracing Q Insight: Static Taint Summary
=> Intel® Processor Tracing (PT) => Pre-summarize taint propagation logic per
to trace control flow transfer basic block via static binary analysis
v/ Trivial runtime overhead v’ Segregate offline analysis cost
‘/ Non-intrusive to program Binary Static Taint Summary
P.r.czcess PT packets @mov ot burt ~N Dot oor )
— read(.., buf,..) \\\
_Jmp B static read—2Qlbuft]
decode] analysis
® ® buf2 buf )
: / mov buf2, buf O—=—0Q 7
w £ — send(.., buf2,..) i bufl
Execution Trace: A sequence of basic blocks \_ y, Lour]O Osend




PALANTIR: System Overview
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Running Example: Provenance Enhancement

Static Taint Summary
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Binary Process
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while ((connection_t *) conn) {

request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf,

)

N
Execution trace
from PT
SYSCALL=read SYSCALL=send
FILE=filei IP_ADDR=/Pj

| Audit logs from system auditing




Running Example: Provenance Enhancement

Static Taint Summary

\ J
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BIN
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while ((connection_t *) conn) { : Execution trace :
request_t *r = conn->req; I from PT I
int fd = open(r->req_file); = =
read(fd, r->buf, ..); | SYSCALL=.reiad SYSCALL=sen?1
send(conn->sock_fd, r->buf, ..); FILE=filei IP_ADDR=/PI

Observability-Enhanced Provenance Graph
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Evaluation Settings

* Evaluation Aspects

* How efficient is PALANTIR at attack investigation?

 What is the runtime performance of PALANTIR?

 Evaluation Dataset

* Four real-world cyber-attacks simulated in a testbed:
Watering-hole, Data Leakage, Insider Threat, and Phishing Email

* SPEC CPU 2006 benchmarks & real-world common programs



Attack Investigation

* Identify true causality among system events and dependencies

I o o
Attacl.( Program Audit Logs PT Packets nve.stlgatlon
Scenario Time (s)

Watering Weet 10,256 62,175,669 1,329321333 12.05
Hole Nginx 1,830 401,708 5,160,695 2.86
Data Curl 10,309 1882471 17,516,456 9.39

Leakage Pure-ftpd 25,562 21402,396 2,833,740916 2.85

Insider Cp 1,814 134,161 1,048,907 0.20
Threat Lighttpd 4 800 499 995 5,448 715 0.58
P?:gi?g Sendmail 29 433 7488895 120,264,352 18.09

[ v/ PALANTIR achieves a high efficiency in attack investigation ]




Attack Investigation - Comparison

 Compare with Dynamic Information Flow Tracking (DIFT)-based system

Attack Investigation Time (s)
) Program
Scenario PALANTIR RTAG

Watering Wget 12.05 67.93
Hole el 2.86 37.50 R74G [Security’ 18]
Curl 9.39 50.03
Le'z,i?ge E—— g 816 * Record-and-replay
ure-1t . . . .
- e DIFT with libdft
Insider Cp 0.20 0.89
Threat Lighttpd 0.58 12.13
AU Sendmail 18.09 238.20
Email

[ v/ PALANTIR reduces 77%-96% time from DIFT-based provenance tracking ]




Runtime Performance

Runtime Overhead on SPEC CPU 2006 benchmarks Runtime Overhead on real-world programs
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[ v/ PALANTIR’s hardware PT incurs <5% runtime-overhead for processor tracing ]




Conclusion

* A major challenge in provenance analysis is dependency explosion.

* Insights:
* Hardware-assisted approach provides efficient runtime performance
e Static taint summarization can segregate offline overhead

* We propose PALANTIR:
e Optimize attack provenance by hardware-enhanced system observability

* Resolve dependency explosion by using instruction-level data flow




PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Thank You!

chugiz@comp.nus.edu.sg

Artifact Available: https://qithub.com/Iceqrave0391/Palantir



https://github.com/Icegrave0391/Palantir
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Storage Cost

* Whole system storage cost
e Overall PT trace storage: 98.4GB-111.6GB/day

* Running server storage cost
* Request 10,000 times within 32 concurrent connections
PT Storage Cost (MB) to trace web servers (10,000 requests)

100KBFile | 512KBFile | 1MBFile 10MB File
74 74 75 83

Nginx

Httpd 274 275 274 304
Lighttpd 42 51 55 107
Thttpd 46 50 50 57

[ v/ Acceptable, PALANTIR can free the storage after provenance optimizing ]
D




-
Runtime Performance - Comparison

* Hardware Processor Tracing vs. Dynamic Instrumentation

2600%

4 Intel PT Overhead

2500% Intel PIN (App. Instrumentation) Overhead
4

2400%.+
700%1

400%:-

100%.+
45%]]

25%1

5% == 7= — — | r; o
Wget Nginx Curl Pure-ftpd Cp Lighttpd  Sendmail

[ v/ Hardware PT is 3x-436x faster than instrumentation-based runtime tracing ]




Execution Trace

* A Sequence of basic blocks indicates program control flow and execution history
v Enable offline data flow analysis to recover instruction-level data flow




Scope Refinement:
Cut down offline computation overhead

* Whole program binary/execution trace: a massive codebase
Observation: Only a small segment of code is related to the taints of system calls

. "faint Scope:
* Introduce taint sources (e.g., read)
| mov buf, bufl | * Propagate the taints (data flow)
Pn--i read(fd, buf,..) i . .
Fn A() N send(fd, buf,..) | * Reach taint sinks (e.g., send)

/\ et o Refine the scope via the call graph

traversal
read() send()

* The offline analysis only needs to be

Call Graph performed inside the scope




Static Taint Summary:
segregate offline computation overhead

* Directly recover syscall taints on the execution trace is time-, memory-
consuming (low efficiency) ®

. Q Pre-summarize taint propagation logic per basic block by performing the
forward inter-procedural static binary analysis

INPUT: Binary Scope Entry OUTPUT: Taint Summary . —

%7 ouf. bufl " —\ | Static analysis is context-,
mov but, bufl ur O O=——+"u . e
read(.., buf,..) 9 @E field-, and path-sensitive.
j || read [buf]

LJ"‘P B O——=0teurl)

o [forward] Assign symbolic value for
analysis

) .
Vov buf2, buf N ® buf2(ye——( buf unknown variables to
send(.., bufz,..) % ' mitigate memory alias.
buf2 d
& (bur21)——-(send

J
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