
PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Jun Zeng*, Chuqi Zhang*, and Zhenkai Liang

ACM CCS, November 2022

Los Angeles, U.S.A.

Advanced Cyber Attacks in Enterprises

System Auditing:
the Foundation of Attack Investigation

• System auditing records OS-level events
(system entity interactions)
• e.g., system call Userspace

Kernel

syscall_read ()

Process

File System

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150
type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

Audit

System Auditing:
the Foundation of Attack Investigation

• System auditing records OS-level events
(system entity interactions)
• e.g., system call

• Audit logs can be used for:

✓ Root cause analysis

✓ Ramification discovery

Userspace

Kernel

syscall_read ()

Process

File System

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150
type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

Audit

Provenance Graph from Audit Logs

…
1. bash, read, malicious.sh
2. bash, clone, cp
3. cp, read, /etc/passwd
4. cp, write, /share/file
5. nginx, pread, /share/file
6. nginx, writev, 172.26.187.19
…

bash

malicious.sh.sh

read

cp
clone

172.26.187.19

writev

/share/file.txt

write

/etc/passwd.txt

read

nginx

pread

…
1. bash, read, malicious.sh
2. bash, clone, cp
3. cp, read, /etc/passwd
4. cp, write, /share/file
5. nginx, pread, /share/file
6. nginx, writev, 172.26.187.19
…

bash

malicious.sh.sh

read

clone
nginx

pread

Provenance Graph from Audit Logs

/etc/passwd.txt

read

/share/file.txt

write

172.26.187.19

writev

cp

Provenance Graph from Audit Logs

…
1. bash, read, malicious.sh
2. bash, clone, cp
3. cp, read, /etc/passwd
4. cp, write, /share/file
5. nginx, pread, /share/file
6. nginx, writev, 172.26.187.19
…

bash

malicious.sh.sh

read

cp
clone

172.26.187.19

writev

/share/file.txt

write

/etc/passwd.txt

read

nginx

pread

✓ Provenance Graph constructs the overall attack scenario
by combining historic audit logs!

Challenges of Provenance Tracking

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle requested file

int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

Simplified code for a web server program

server

Lots of
iterations

secret

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle requested file

int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

IP1

IP_n

IP2

IP

server

Challenges of Provenance Tracking

Simplified code for a web server program

file1

file2

file_i

IP_i

file_nsecretLots of
iterations

Forward Tracking

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle requested file

int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

IP1

IP_n

IP2

IP

server

Challenges of Provenance Tracking

Simplified code for a web server program

file1

file2

file_i

IP_i

file_nsecretLots of
iterations

CAN NOT identify the correct descendant.
✘ No conclusion of TRUE provenance.

Dependency Explosion
Problem !

Forward Tracking

Related Work

• Execution Unit Partitioning [NDSS’13, Security’16, NDSS’21, …]:

• Partition program into units by instrumentation or built-in application logs

• Intrusive to program or error-prone units

• Causality Inference [ASPLOS’16, NDSS’18, …]:

• Train a causality model based on dual execution to infer true dependencies

• Inadequate for high-concurrency programs

• Record-and-Replay [CCS’17, Security’18, …]:

• Record non-deterministic program behaviors and replay with taint analysis

• Fine-grained but intrusive to program, and incur high overhead

• Execution Unit Partitioning [NDSS’13, Security’16, NDSS’21, …]:

• Partition program into units by instrumentation or built-in application logs

• Intrusive to the program or error-prone units

• Causality Inference [ASPLOS’16, NDSS’18, …]:

• Train a causality model based on dual execution to infer true dependencies

• Rely on source code and is inadequate for high-concurrency programs

• Record-and-Replay [CCS’17, Security’18, …]:

• Record non-deterministic program behaviors and replay with taint analysis

• Fine-grained but intrusive to program, and incur high overhead

Related Work

Ideal Solution:

• Non-intrusive to program (i.e., instrumentation free)

• Fine-grained (i.e., pinpoint dependency) provenance

• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

server

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Motivation: Enhance Observability

secret

✘

✘

server

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Motivation: Enhance Observability

secret

✘

✘

• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

• Motivation: Enhance audit logs with program data flow to achieve
high system observability

• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

• Motivation: Enhance audit logs with program data flow to achieve
high system observability

read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

Motivation: Enhance Observability

server

secret

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Enhance system observability
(with program data flow)

✓
send

read

Fine-grained Provenance

• Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

• Enhance observability and resolve fine-grained provenance:

Fine-grained Provenance

• Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

• Enhance observability and resolve fine-grained provenance:

Control flow tracing: trace
runtime execution history

1

Data flow analysis: recover
syscall-to-syscall taints

2

Optimization: incorporate
audit logs with the taints

3

while
request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

1

2
read()

send()

read()

send()

SYSCALL=read

FILE=secret

SYSCALL=send

IP=IP0

SYSCALL=read

FILE=file1

SYSCALL=send

IP=IP1

3

server

IP0 IP1

file1secret

read

send send

read

Our Key Idea

Online program runtime recording

TNT TIP

TNT TNT

TNT TIP

…

PT packets

Offline computationally expensive analysis

Insight: Hardware Tracing
=> Intel® Processor Tracing (PT)

to trace control flow transfer

✓ Trivial runtime overhead
✓ Non-intrusive to program

Intel PT

Process

Insight: Static Taint Summary
=> Pre-summarize taint propagation logic per

basic block via static binary analysis

✓ Segregate offline analysis cost

Control flow tracing1 Data flow analysis2

Execution Trace: A sequence of basic blocks

mov buf, buf1

read(…, buf,…)
jmp B

mov buf2, buf

send(…, buf2,…)
…

A

B

Binary

buf buf1

read [buf1]

buf2 buf

[buf1] send

A

B =

buf1

Static Taint Summary

static
analysisdecode

PALANTIR: System Overview

Provenance Analysis

Enhancement

readreadread readreadsend

BIN

Binary Process

Static Taint Summary

Binary Pre-processing

Offline Analysis

read

send

read

send

Enhanced Provenance
Processor Tracing

System Auditing

LOGread LOGsend

Runtime Monitoring

+

...

Running Example: Provenance Enhancement

SYSCALL=read

FILE=file1

SYSCALL=read

FILE=file1

SYSCALL=read

FILE=filei
SYSCALL=read

FILE=file1

SYSCALL=read

FILE=file1

SYSCALL=send

IP_ADDR=IPi

while ((connection_t *) conn) {

request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);

send(conn->sock_fd, r->buf, …);
}
...

C

send

E

read

A

X B D
...

Process A E

B
read

send

Audit logs from system auditing

Execution trace
from PT

Static Taint Summary

BIN

Binary

Running Example: Provenance Enhancement

SYSCALL=read

FILE=file1

SYSCALL=read

FILE=file1

SYSCALL=read

FILE=filei
SYSCALL=read

FILE=file1

SYSCALL=read

FILE=file1

SYSCALL=send

IP_ADDR=IPi

while ((connection_t *) conn) {

request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);

send(conn->sock_fd, r->buf, …);
}
...

BIN

Binary

read

A

B
...

Process A E

B
read

send

send

E

B

Audit logs from system auditing

Execution trace
from PT

send

E

read

A

Static Taint Summary

file1

file2

filei

secret

IP1 IPi

IP0

server

IP2

...

...

Observability-Enhanced Provenance Graph

Annotated with taints!
(Indicated by different colors)

✓ Fine-grained Provenance is
optimized with instruction-level

Observability

Evaluation Settings

• Evaluation Aspects

• How efficient is PALANTIR at attack investigation?

• What is the runtime performance of PALANTIR?

• Evaluation Dataset

• Four real-world cyber-attacks simulated in a testbed:

Watering-hole, Data Leakage, Insider Threat, and Phishing Email

• SPEC CPU 2006 benchmarks & real-world common programs

Attack Investigation

• Identify true causality among system events and dependencies

PT Storage Cost (MB) to trace web servers (10,000 requests)
Attack

Scenario
Program Audit Logs PT Packets Instructions

Investigation
Time (s)

Watering
Hole

Wget 10,256 62,175,669 1,329,321,333 12.05

Nginx 1,830 401,708 5,160,695 2.86

Data
Leakage

Curl 10,309 1,882,471 17,516,456 9.39

Pure-ftpd 25,562 21,402,396 2,833,740,916 2.85

Insider
Threat

Cp 1,814 134,161 1,048,907 0.20

Lighttpd 4,800 499,995 5,448,715 0.58

Phishing
Email

Sendmail 29,433 7,488,895 120,264,352 18.09

✓ PALANTIR achieves a high efficiency in attack investigation

Attack Investigation - Comparison

• Compare with Dynamic Information Flow Tracking (DIFT)-based system

Attack
Scenario

Program
Investigation Time (s)

PALANTIR RTAG

Watering
Hole

Wget 12.05 67.93

Nginx 2.86 37.50

Data
Leakage

Curl 9.39 50.03

Pure-ftpd 2.85 78.16

Insider
Threat

Cp 0.20 0.89

Lighttpd 0.58 12.13

Phishing
Email

Sendmail 18.09 238.20

✓ PALANTIR reduces 77%-96% time from DIFT-based provenance tracking

RTAG [Security’18]

• Record-and-replay
• DIFT with libdft

Runtime Performance

0%

5%

10%

15%

Varnish
d

Nginx

Proftp
d

Curl
Wget

Http
d

Lighttp
d

Pure-ftp
d Cp Zip

Thttp
d

Average

Sendmail
0%

5%

10%

15%

20%

25%

30%

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

4.
na

m
d

44
5.

go
bm

k
45

3.
po

vr
ay

45
6.

hm
m

er
45

8.
sje

ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f

47
0.

lb
m

47
1.

om
net

pp

47
3.

as
ta

r
48

2.
sp

hi
nx

3

48
3.

xa
la

nc
bm

k

99
8.

sp
ec

ra
nd

Ave
ra

ge

Runtime Overhead on SPEC CPU 2006 benchmarks Runtime Overhead on real-world programs

Average: 3.7% overheadAverage: 4.5% overhead

✓ PALANTIR’s hardware PT incurs <5% runtime-overhead for processor tracing

Conclusion

• A major challenge in provenance analysis is dependency explosion.

• Insights:

• Hardware-assisted approach provides efficient runtime performance

• Static taint summarization can segregate offline overhead

• We propose PALANTIR:
• Optimize attack provenance by hardware-enhanced system observability

• Resolve dependency explosion by using instruction-level data flow

PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Thank You!
chuqiz@comp.nus.edu.sg

Artifact Available: https://github.com/Icegrave0391/Palantir

https://github.com/Icegrave0391/Palantir

Backup Slides

Storage Cost

• Whole system storage cost
• Overall PT trace storage: 98.4GB-111.6GB/day

• Running server storage cost
• Request 10,000 times within 32 concurrent connections

Program 100KB File 512KB File 1MB File 10MB File

Nginx 74 74 75 83

Httpd 274 275 274 304

Lighttpd 42 51 55 107

Thttpd 46 50 50 57

PT Storage Cost (MB) to trace web servers (10,000 requests)

✓ Acceptable, PALANTIR can free the storage after provenance optimizing

Runtime Performance - Comparison

25%

5%

45%

400%

Nginx CurlWget LighttpdPure-ftpd Cp Sendmail

100%

700%
2400%

2500%

2600%

• Hardware Processor Tracing vs. Dynamic Instrumentation

✓ Hardware PT is 3x-436x faster than instrumentation-based runtime tracing

Hardware is the new software:
Processor Tracing with runtime efficiency

• Intel® Processor Tracing (Intel® PT):
Record program control flow transfer within trivial (< 7%) runtime overhead

✓ Recover program execution history with runtime memory layout

Running
Process PT

hardware

TNT TIP

TNT TNT

TNT TIP

…

PT packets decoder

memory
dump

Execution trace

Execution Trace
• A Sequence of basic blocks indicates program control flow and execution history
✓ Enable offline data flow analysis to recover instruction-level data flow

Scope Refinement:
Cut down offline computation overhead

• Whole program binary/execution trace: a massive codebase
Observation: Only a small segment of code is related to the taints of system calls

• Taint Scope:

• Introduce taint sources (e.g., read)

• Propagate the taints (data flow)

• Reach taint sinks (e.g., send)

• Refine the scope via the call graph
traversal

• The offline analysis only needs to be
performed inside the scope

Fn B()

main()

Fn A()

Fn X() read() send()

mov buf, buf1

read(fd, buf,..)
send(fd, buf,..)

..

Call Graph

✓

✓✘

Static Taint Summary:
segregate offline computation overhead

• Directly recover syscall taints on the execution trace is time-, memory-
consuming (low efficiency) 

• Pre-summarize taint propagation logic per basic block by performing the
forward inter-procedural static binary analysis

forward
analysis

mov buf, buf1
read(…, buf,…)
jmp B

mov buf2, buf
send(…, buf2,…)
…

A

B

INPUT: Binary Scope Entry OUTPUT: Taint Summary

buf buf1

read [buf]

buf2 buf

[buf2] send

A

B

Static analysis is context-,
field-, and path-sensitive.

Assign symbolic value for
unknown variables to
mitigate memory alias.

	Slide 0: PALANTIR: Optimizing Attack Provenance with Hardware-enhanced System Observability
	Slide 1: Advanced Cyber Attacks in Enterprises
	Slide 2: System Auditing: the Foundation of Attack Investigation
	Slide 3: System Auditing: the Foundation of Attack Investigation
	Slide 4: Provenance Graph from Audit Logs
	Slide 5: Provenance Graph from Audit Logs
	Slide 6: Provenance Graph from Audit Logs
	Slide 7: Challenges of Provenance Tracking
	Slide 8: Challenges of Provenance Tracking
	Slide 9: Challenges of Provenance Tracking
	Slide 10: Related Work
	Slide 11: Related Work
	Slide 12: Motivation: Enhance Observability
	Slide 13: Motivation: Enhance Observability
	Slide 14: Motivation: Enhance Observability
	Slide 15: Fine-grained Provenance
	Slide 16: Fine-grained Provenance
	Slide 17: Our Key Idea
	Slide 18: PALANTIR: System Overview
	Slide 19: Running Example: Provenance Enhancement
	Slide 20: Running Example: Provenance Enhancement
	Slide 21: Evaluation Settings
	Slide 22: Attack Investigation
	Slide 23: Attack Investigation - Comparison
	Slide 24: Runtime Performance
	Slide 25: Conclusion
	Slide 26
	Slide 27: Backup Slides
	Slide 28: Storage Cost
	Slide 29: Runtime Performance - Comparison
	Slide 30: Hardware is the new software: Processor Tracing with runtime efficiency
	Slide 31: Scope Refinement: Cut down offline computation overhead
	Slide 32: Static Taint Summary: segregate offline computation overhead

