PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Jun Zeng”, Chuqi Zhang”, and Zhenkai Liang
ACM CCS, November 2022
Los Angeles, U.S.A.

Advanced Cyber Attacks in Enterprises

$1.7 million in NFTs stolen in apparent
phishing attack on OpenSea users

/ Two hundred and fifty-four ;ustomers’ names,

tokens were stolen over roughly
Businesses risk ‘catastroy

three hours Dple affected
Another T-Mobile cyberattack reportedly
Private insurance companies
report from the GAO

exposed customer info and SIMs

/ Documents say the company
has contacted impacted
customers

By MITCHELL CLARK
Dec 29, 2021, 7:30 AM GMT+8 | [J 0 Comments

vy @9

System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

e e.g., system call syscall_read ()1

Process

File System

syscall=read exit=0x100 a0=0x3 al=... ... pid=12566 auid=chuqiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_ 64

System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

e e.g., system call syscall_read ()1

Process

i \.
* Audit logs can be used for: erce?

v Root cause analysis File System

v Ramification discovery

syscall=read exit=0x100 a0=0x3 al=... ... pid=12566 auid=chuqiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_ 64

Provenance Graph from Audit Logs

1. bash, read, malicious.sh .sh:lmalicious.sh txt || /share/file

2.bash, clone, c¢cp read Mpread

3.cp, read, /etc/passwd cIoneiE :] :
‘ —>

4.cp, write, /share/file bash P nginx

5.nginx, pread, /share/file A’d writevl

6.nginx, writev, 172.26.187.19 | [wt| /etc/passwd @’ 172.26.187.19 [

[\
EI /share/file
Tl onc
Al ”
ot | | /etc/passwd 1}) 172.26.187.19

Provenance Graph from Audit Logs

1. bash, read, malicious.sh sh [| malicious.sh txt || /share/file

2.bash, clone, cp - read Mpread
3.¢cp, read, /etc/passwd clone [***)
4.cp, write, /share/file bash P Agmx

5.nginx, pread, /share/file Md writevl

6.nginx, writev, 172.26.187.19 | [wt| /etc/passwd @’ 172.26.187.19 [

v/ Provenance Graph constructs the overall attack scenario
by combining historic audit logs/

Challenges of Provenance Tracking

Simplified code for a web server program

]
=
®
N

— file1 -: file_i | —
while ((connection_t *) conn) { Lotsof || secret | / :Ifile_n

request _t *r = conn->req; iterations S~

int fd = open(r->req_file);

T (X
read(fd, r->buf, ..); Oé,ﬂ / 'erm

d -> k 'Fd, ->b -F)) Q S
send(conn->sock_ r->bu) 'é,m '&,rm

Challenges of Provenance Tracking

Simplified code for a web server program

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle reqguested file
int fd = onen(r->req _file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf,

Lots of
iterations

)

L3
ijfyt\

file1

— | file2 —
— | file_i | —
/ — | file_n
server

a

e e a
—_
-—
”
”
-
+ F

orward Tracking -

CAN NOT identify the correct descendant. Dependency Explosion
X No conclusion of TRUE provenance. Problem !

Related Work

* Execution Unit Partitioning [NDSS’13, Security’16, NDSS'21, ...]:
* Partition program into units by instrumentation or built-in application logs
* Intrusive to program or error-prone units

* Causality Inference [AsPLOS’16, NDSS'18, ...]:

* Train a causality model based on dual execution to infer true dependencies
* Inadequate for high-concurrency programs

* Record-and-Replay [ccs'17, Security’18, ...]:

* Record non-deterministic program behaviors and replay with taint analysis
* Fine-grained but intrusive to program, and incur high overhead

@ Ideal Solution:

* Non-intrusive to program (i.e., instrumentation free)
* Fine-grained (i.e., pinpoint dependency) provenance

Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance

X NO fine-grained provenance (program data flow) iy

X - — [fite1 — — | file_i | —
—_ Fsecret / _ I file_n
Xy ———

X

server

C xC \&
QL7 @ /

b
b

IP_n
' . ~ &/ =
&,m IP_i

0",

Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance

X NO fine-grained provenance (program data flow) iy

X - — [fite1 — — | file_i | —
—_ Psecret / _ I file_n
Xy ———

X

server

O‘S‘,ﬂ ~ @ IP_n 2
SN
ez

0",

b
b

. QMotivation: Enhance audit logs with program data flow to achieve
high system observability

Motivation: Enhance Observability

e Audit log ONLY records OS-level events => coarse-grained provenance
X NO fine-grained provenance (program data flow)

— | file2

A — | fitez =Tt | —
J— Fsecret / —_ I file_n
v __—

server

oo s
(conn->sock_fd y) "‘ \

&‘;

IP_n

\"

IP_i

Enhance system observability &,m
(with program data flow)

. QMotivation: Enhance audit logs with program data flow to achieve
high system observability

Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:

Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:

@

@

©

=/
Control flow tracing: trace
runtime execution history

\&/
Data flow analysis: recover
syscall-to-syscall taints

2/
Optimization: incorporate

audit logs with the taints

while SYSCALL=read | SYSCALL=read
FILE=secret | , | FILE=file
(Hrequegt— r = ->req; :
[- open (RESRENERSIS); rexd() | read),
el > FESBUE,—)- of :
send (EGHRSSOEKNNG, WSBH<.); send() | send(
|
SYSCALL=send | ! | SYsCALL=send
IP=/PO | IP=/P1

=
Qo]

J— I secret J— I file1
Eserver

Our Key Idea

(D Control flow tracing @ Data flow analysis
Online program runtime recording Offline computationally expensive analysis
ansight: Hardware Tracing Q Insight: Static Taint Summary
=> Intel® Processor Tracing (PT) => Pre-summarize taint propagation logic per
to trace control flow transfer basic block via static binary analysis
v/ Trivial runtime overhead v’ Segregate offline analysis cost
‘/ Non-intrusive to program Binary Static Taint Summary
P.r.czcess PT packets @mov ot burt ~N Dot oor)
— read(.., buf,..) \\\
_Jmp B static read—2Qlbuft]
decode] analysis
® ® buf2 buf)
: / mov buf2, buf O—=—0Q 7
w £ — send(.., buf2,..) i bufl
Execution Trace: A sequence of basic blocks _ y, Lour]O Osend

PALANTIR: System Overview

Offline Analysis

Binary Pre-processing

!

(Static Taint Summary\

o) o) lo®

ol lEo]lo™],

Process

[

-y

Runtime Monitoring

System Auditing

| read | | send |

+
Processor Tracing

CK’D/U”D

\

Provenance Analysis

Enhancement

Enhanced Provenance

NG

PR

& & B

Running Example: Provenance Enhancement

Static Taint Summary

7

N
@O O\@\ \N® \
S b\\ (@
read : }:i
\8"\01 \ ‘7 \L Y.

® \@\b \@Q\I;

Binary Process
- e —» eoo
(:,,—————-* BIN
while ((connection_t *) conn) {

request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf,

)

N
Execution trace
from PT
SYSCALL=read SYSCALL=send
FILE=filei IP_ADDR=/Pj

| Audit logs from system auditing

Running Example: Provenance Enhancement

Static Taint Summary

\ J
Process)
— ____} [X X}
BIN
I I
I I
while ((connection_t *) conn) { : Execution trace :
request_t *r = conn->req; I from PT I
int fd = open(r->req_file); = =
read(fd, r->buf, ..); | SYSCALL=.reiad SYSCALL=sen?1
send(conn->sock_fd, r->buf, ..); FILE=filei IP_ADDR=/PI

Observability-Enhanced Provenance Graph

7

| Audit logs from system auditing

N
— _: file2 -
— I filel —_ fllel
— [secret
—>(.
server
(X
QL o
3] e L
@L/
y,

v/ Fine-grained Provenance is

optimized with instruction-level

Observability

Evaluation Settings

* Evaluation Aspects

* How efficient is PALANTIR at attack investigation?

 What is the runtime performance of PALANTIR?

 Evaluation Dataset

* Four real-world cyber-attacks simulated in a testbed:
Watering-hole, Data Leakage, Insider Threat, and Phishing Email

* SPEC CPU 2006 benchmarks & real-world common programs

Attack Investigation

* Identify true causality among system events and dependencies

I o o
Attacl.(Program Audit Logs PT Packets nve.stlgatlon
Scenario Time (s)

Watering Weet 10,256 62,175,669 1,329321333 12.05
Hole Nginx 1,830 401,708 5,160,695 2.86
Data Curl 10,309 1882471 17,516,456 9.39

Leakage Pure-ftpd 25,562 21402,396 2,833,740916 2.85

Insider Cp 1,814 134,161 1,048,907 0.20
Threat Lighttpd 4 800 499 995 5,448 715 0.58
P?:gi?g Sendmail 29 433 7488895 120,264,352 18.09

[v/ PALANTIR achieves a high efficiency in attack investigation]

Attack Investigation - Comparison

 Compare with Dynamic Information Flow Tracking (DIFT)-based system

Attack Investigation Time (s)
) Program
Scenario PALANTIR RTAG

Watering Wget 12.05 67.93
Hole el 2.86 37.50 R74G [Security’ 18]
Curl 9.39 50.03
Le'z,i?ge E—— g 816 * Record-and-replay
ure-1t
- e DIFT with libdft
Insider Cp 0.20 0.89
Threat Lighttpd 0.58 12.13
AU Sendmail 18.09 238.20
Email

[v/ PALANTIR reduces 77%-96% time from DIFT-based provenance tracking]

Runtime Performance

Runtime Overhead on SPEC CPU 2006 benchmarks Runtime Overhead on real-world programs

30%

25% -

20% 1

[1 Runtime Overhead

Average: 4.5% overhead

15% -

10% |

[Runtime Overhead

Average: 3.7% overhead

15% -
_ y B
10% 1
’ 5% A g
5% 1
] .08 1l _HHEB :
0% |m mﬂﬂ,ﬂ o B mmH m : 0% 4+—= , - , F_l B e
. : X .
,\}Qq,,bg%’g &(‘,\ @0 ’b@b Q$ AKfé &Q} . \Q,QQO {‘\\?& &é é}QQ %Q@ ,b(:}‘,bk . \Q.‘?) \Q&\b (b(\b k,ng/ (({\‘,;(\6 $@°*06 ((\’b\\ (OK‘Qé C\)‘\ ®%0 \e\\-\‘Qd.\%(\\‘Qd(ej\\-Qé @ ,L\Q,\\(\\-&'Qéqe(’é%e
U o & & L o F ~o N é\Q 0 ‘é«\ é\o S Vé<z, NG e Q NN ®
w ¥W W TS WS 69 W o R
R A I N P
b(9"\/ ™ bﬂb o)

[v/ PALANTIR’s hardware PT incurs <5% runtime-overhead for processor tracing]

Conclusion

* A major challenge in provenance analysis is dependency explosion.

* Insights:
* Hardware-assisted approach provides efficient runtime performance
e Static taint summarization can segregate offline overhead

* We propose PALANTIR:
e Optimize attack provenance by hardware-enhanced system observability

* Resolve dependency explosion by using instruction-level data flow

PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Thank You!

chugiz@comp.nus.edu.sg

Artifact Available: https://qithub.com/Iceqrave0391/Palantir

https://github.com/Icegrave0391/Palantir

Backup Slides

Storage Cost

* Whole system storage cost
e Overall PT trace storage: 98.4GB-111.6GB/day

* Running server storage cost
* Request 10,000 times within 32 concurrent connections
PT Storage Cost (MB) to trace web servers (10,000 requests)

100KBFile | 512KBFile | 1MBFile 10MB File
74 74 75 83

Nginx

Httpd 274 275 274 304
Lighttpd 42 51 55 107
Thttpd 46 50 50 57

[v/ Acceptable, PALANTIR can free the storage after provenance optimizing]
D

-
Runtime Performance - Comparison

* Hardware Processor Tracing vs. Dynamic Instrumentation

2600%

4 Intel PT Overhead

2500% Intel PIN (App. Instrumentation) Overhead
4

2400%.+
700%1

400%:-

100%.+
45%]]

25%1

5% == 7= — — | r; o
Wget Nginx Curl Pure-ftpd Cp Lighttpd Sendmail

[v/ Hardware PT is 3x-436x faster than instrumentation-based runtime tracing]

Execution Trace

* A Sequence of basic blocks indicates program control flow and execution history
v Enable offline data flow analysis to recover instruction-level data flow

Scope Refinement:
Cut down offline computation overhead

* Whole program binary/execution trace: a massive codebase
Observation: Only a small segment of code is related to the taints of system calls

. "faint Scope:
* Introduce taint sources (e.g., read)
| mov buf, bufl | * Propagate the taints (data flow)
Pn--i read(fd, buf,..) i . .
Fn A() N send(fd, buf,..) | * Reach taint sinks (e.g., send)

/\ et o Refine the scope via the call graph

traversal
read() send()

* The offline analysis only needs to be

Call Graph performed inside the scope

Static Taint Summary:
segregate offline computation overhead

* Directly recover syscall taints on the execution trace is time-, memory-
consuming (low efficiency) ®

. Q Pre-summarize taint propagation logic per basic block by performing the
forward inter-procedural static binary analysis

INPUT: Binary Scope Entry OUTPUT: Taint Summary . —

%7 ouf. bufl " —\ | Static analysis is context-,
mov but, bufl ur O O=——+"u . e
read(.., buf,..) 9 @E field-, and path-sensitive.
j || read [buf]

LJ"‘P B O——=0teurl)

o [forward] Assign symbolic value for
analysis

) .
Vov buf2, buf N ® buf2(ye——(buf unknown variables to
send(.., bufz,..) % ' mitigate memory alias.
buf2 d
& (bur21)——-(send

J

	Slide 0: PALANTIR: Optimizing Attack Provenance with Hardware-enhanced System Observability
	Slide 1: Advanced Cyber Attacks in Enterprises
	Slide 2: System Auditing: the Foundation of Attack Investigation
	Slide 3: System Auditing: the Foundation of Attack Investigation
	Slide 4: Provenance Graph from Audit Logs
	Slide 5: Provenance Graph from Audit Logs
	Slide 6: Provenance Graph from Audit Logs
	Slide 7: Challenges of Provenance Tracking
	Slide 8: Challenges of Provenance Tracking
	Slide 9: Challenges of Provenance Tracking
	Slide 10: Related Work
	Slide 11: Related Work
	Slide 12: Motivation: Enhance Observability
	Slide 13: Motivation: Enhance Observability
	Slide 14: Motivation: Enhance Observability
	Slide 15: Fine-grained Provenance
	Slide 16: Fine-grained Provenance
	Slide 17: Our Key Idea
	Slide 18: PALANTIR: System Overview
	Slide 19: Running Example: Provenance Enhancement
	Slide 20: Running Example: Provenance Enhancement
	Slide 21: Evaluation Settings
	Slide 22: Attack Investigation
	Slide 23: Attack Investigation - Comparison
	Slide 24: Runtime Performance
	Slide 25: Conclusion
	Slide 26
	Slide 27: Backup Slides
	Slide 28: Storage Cost
	Slide 29: Runtime Performance - Comparison
	Slide 30: Hardware is the new software: Processor Tracing with runtime efficiency
	Slide 31: Scope Refinement: Cut down offline computation overhead
	Slide 32: Static Taint Summary: segregate offline computation overhead

