
PalanTír: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Jun Zeng∗

National University of Singapore
junzeng@comp.nus.edu.sg

Chuqi Zhang∗

National University of Singapore
chuqiz@comp.nus.edu.sg

Zhenkai Liang
National University of Singapore

liangzk@comp.nus.edu.sg

ABSTRACT

System auditing is the foundation of attack provenance to inves-
tigate root causes and ramifications of cyber-attacks. However,
provenance tracking on coarse-grained audit logs suffers from false
causalities caused by dependency explosion. Recent approaches
address this problem by increasing provenance granularity using
execution partitioning or record-and-replay techniques. Unfortu-
nately, they require program instrumentation and/or impose an
unaffordable overhead, which is not practical in deployment.

In this paper, we present PalanTír, a provenance-based system
that enhances system observability to enable precise and scalable at-
tack investigation. Leveraging hardware-assisted processor tracing
(PT), PalanTír optimizes attack provenance in system-call-level
audit logs by recovering instruction-level causalities via taint anal-
ysis based on PT traces. To reduce the scope of taint analysis and
simplify the complexity of taint propagation, PalanTír statically
profiles program binaries to identify instructions causally relevant
to audit logs and pre-summarize their taint propagation logic at the
coarse granularity of basic blocks. Our evaluation against real-life
cyber-attacks shows PalanTír’s efficiency and effectiveness in at-
tack scenario reconstruction. We also demonstrate that PalanTír
can scale to large applications (e.g., Nginx and Sendmail) compiled
from upwards of 463,510 lines of C/C++ code.

CCS CONCEPTS

• Security and privacy → Systems security.

KEYWORDS

Attack Provenance; System Auditing; Processor Tracing
ACM Reference Format:

Jun Zeng, Chuqi Zhang, and Zhenkai Liang. 2022. PalanTír: Optimizing
Attack Provenance with Hardware-enhanced System Observability. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560570

1 INTRODUCTION

Large enterprises (e.g., Equifax [3] and Twitter [4]) are often the
targets of advanced cyber-attacks, resulting in personal information
leakage or fraudulent access to financial services. Attackers have
∗Co-primary authors.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560570

also become more stealthy by carrying out the attacks in longer
time spans. For example, the Solarwinds hack went undetected for
more than nine months and leaked sensitive data from government
agencies and technology companies [8].

In order to understand the motivations behind cyber-attacks, a
promising method is to reconstruct attack provenance [16, 34, 42],
where a provenance graph is built upon system-call-level audit logs
to investigate how an attacker gains access to a system and what
damages are inflicted. Specifically, a provenance graph encodes de-
pendencies among system entities, i.e., processes, files, and network
sockets. Once a compromised system entity is detected, security
analysts can traverse the graph to discover the root cause of the
attack and its ramifications [52, 53].

However, provenance analysis based on system-call logs can only
track coarse-grained information flows in systems, conservatively
assuming the output of a process dependent on all its preceding
inputs. Consequently, provenance-based attack investigation usu-
ally suffers from the dependency explosion problem [55], especially
for long-running processes. For example, Nginx is a widely-used
web server in which network requests are handled by a worker
process. Suppose a nginx process receives multiple requests for
index.html and secret.txt. It is challenging for an analyst to
distinguish which request(s) corresponds to secret.txt since it
depends on all the preceding requests.

To address this problem, prior work separates information flows
in a process, e.g., by partitioning a process into autonomous ex-
ecution units [55, 64, 65]. Subsequently, only audit logs within
a unit are considered causally relevant. However, most solutions
for execution partitioning require application instrumentation to
mark unit boundaries, presuming permissions to modify software
programs, which is not practical for deployment in production
environments [63]. Besides calling for instrumentation, recent stud-
ies [41, 89, 90] leverage developer built-in application logs to iden-
tify execution units. Nonetheless, the quality of application logs
is not always reliable due to the lack of concrete logging specifi-
cations and guidelines [31, 59], which may lead to false-positive
and false-negative execution units. Another line of research adopts
record-and-replay systems [46, 47] to record non-deterministic pro-
gram executions that are later replayed to conduct instruction-level
dynamic information flow tracking (i.e., taint analysis [72]). Unfortu-
nately, record-and-replay systems also require instrumentation and
commonly impose an unaffordable slowdown for multi-threaded
programs running on multi-cores [24].

The fundamental question to optimize attack provenance is how
to enhance system observability [82] — a measure of how well the
internal states of a system can be inferred from knowledge of its ex-
ternal outputs. The key to high observability is differentiating data
flows in processes to achieve fine-grained provenance tracking on

3135

https://doi.org/10.1145/3548606.3560570
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3548606.3560570

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

…

… …

… (b) Fine-grained provenance.

Dependency Explosion by wget

… …Dependency Explosion by nginx
recvfrom

write

read clone

read

write
pread

writev

recvfrom

write

pread

writev

unlink

/home/admin/secret.txt
wget

install.sh cp secret.txt

y.y.y.yx.x.x.x

nginx

z.z.z.z

wget

y.y.y.y

install.sh

secret.txt

nginx

z.z.z.z

wget nginx

rmclone

bash

(a) A simplified provenance graph.

Figure 1: Watering-hole attack.

audit logs. However, collecting necessary runtime information of a
process for data-flow separation can result in heavy performance
overhead. A practical solution needs to incur a low overhead, re-
quire no program modification, and work with commodity systems.

In this work, we present PalanTír, the first attack investigation
system that leverages hardware-assisted processor tracing (PT) to
optimize attack provenance, which efficiently records a process’s
execution trace and effectively recovers instruction-level data flows.
By combining system-call-level audit logs and instruction-level PT
traces, PalanTír enables precise attack forensics with low overhead.
Moreover, PT is a hardware feature enabled in modern CPUs [1, 5]
that does not need any software instrumentation.

While PT can enhance system observability for attack prove-
nance, several challenges exist in designing a practical provenance
tracker. First, even though PT allows fully reconstructing program
executions at the instruction level, optimization is needed to avoid
the prohibitive overhead in the instruction-level taint analysis. Sec-
ond, PT traces across processes are regularly interleaved, and their
orders would vary based on dynamic program executions, making
it difficult to correlate audit logs with PT traces.

To overcome the first challenge, our key intuition is to identify
the tasks that can be pre-computed, reducing the computational
complexity in instruction-level provenance tracking. Towards this
end, PalanTír performs static analysis on application binaries to
determine instructions that may taint system calls or be tainted by
system calls. Therefore, PalanTír can selectively taint instructions
in PT traces only pertaining to audit logs of system calls. To further
improve efficiency, PalanTír pre-summarizes taint propagation
logic for instructions at a coarser granularity of basic blocks. As for
the second challenge, we develop a kernel module to intercept the
PT hardware and associate execution traces with the corresponding
process IDs (PID). To bridge the gap between PT traces and audit
logs, PalanTír extracts syscall instructions from PT traces and
sequentially aligns audit logs with them. Thereafter, by propagating
taints among syscall instructions, PalanTír is capable of tagging
audit logs with instruction-level provenance.

We implement PalanTír and evaluate its effectiveness in opti-
mizing attack provenance on four real-world cyber-attacks simu-
lated in a testbed environment. Additionally, we adopt 15 commonly-
used Linux applications to investigate the scalability of PalanTír’s
static binary analysis. Experimental results show that PalanTír
efficiently captures fine-grained provenance that reconstructs foren-
sically accurate attack scenarios. Besides, PalanTír’s static anal-
ysis scales to complicated applications compiled from upwards
of 463,510 lines of C/C++ source code. We also demonstrate that
PalanTír incurs an average runtime overhead of 4.5% on SPEC
CPU 2006 benchmarks and 3.7% on popular Linux applications.

In summary, we make the following contributions:

• We propose a novel idea of optimizing attack provenance by
enhancing system observability based on hardware-assisted pro-
cessor tracing (PT).

• We design a scalable binary analyzer to statically identify in-
structions causally related to audit logs and summarize their
taint propagation logic, and a practical provenance tracker that
efficiently collects PT traces and performs selective taint analysis
for fine-grained provenance tracking.

• We implement PalanTír and evaluate it against real-world cyber-
attacks and commonly-used Linux applications. The results show
that PalanTír achieves high effectiveness and efficiency in attack
investigations and scales to complicated applications.

2 BACKGROUND & MOTIVATION

In this section, we illustrate the problem of dependency explosion
in provenance-based attack investigation using a real-world cyber-
attack, watering-hole attack [70]. Then, we present our insight into
using hardware-enhanced observability to address the problem.

2.1 Running Example

Watering-hole attack is a widespread cyber-attack that targets large
enterprises [2]. Instead of directly breaking into well-protected
enterprise networks, it compromises less-secure websites frequently
visited by the enterprise’s employees.
Attack Scenario. Consider a server administrator in an enterprise
who one day receives requests for software installation. To facil-
itate software management, the enterprise maintains an internal
mirror that archives a list of sources for software packages. After
going through the mirror, the administrator uses wget to down-
load the requested software in bulk. Unfortunately, one of the
sources has been compromised by an attacker, in which the original
installation script install.sh is replaced with a malicious one.
Without being aware of the attack, she then runs the malicious
install.sh that copies /home/admin/secret.txt to the folder
/usr/share/nginx/html hosted by Nginx. This folder serves as
the content source of a public web server that handles daily network
requests. Therefore, the attacker can access the sensitive file by vis-
iting the server. To hide the attack footprint, install.sh will delete
/usr/share/nginx/html/secret.txt after data exfiltration.

2.2 Attack Investigation

After gathering the latest cyber threat intelligence reports, the ad-
ministrator discovers an indicator of compromise (connection to
z.z.z.z) in the server, indicating forensic evidence of potential
intrusions. To understand attack scopes, the administrator parses
audit logs generated by a system auditing framework (Linux Au-
dit [10]) into a provenance graph. By traversing the graph forward
and backward, she can identify the root cause of the attack and its

3136

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 1: Comparison of solutions to dependency explosion.

Provenance

System

Data

Granularity

App

Instru.

App

Logging

Training

Run

BEEP [55] Unit ✓ ✗ ✓

ProTracer [65] Unit ✓ ✗ ✓

MPI [64] Task ✓ ✗ ✗

RAIN [46] Instruction ✓ ✗ ✗

RTAG [47] Instruction ✓ ✗ ✗

MCI [54] Task ✗ ✗ ✓

UISCOPE [89] Task ✗ ✓ ✗

OmegaLog [41] Task ✗ ✓ ✗

ALchemist [90] Task ✗ ✓ ✗

PalanTír Instruction ✗ ✗ ✗

ramifications. Intuitively, provenance analysis serves to connect
separate attack steps, reconstructing the overall attack scenario for
investigation [52]. Figure 1(a) illustrates a simplified provenance
graph resulting from the backward tracing based on z.z.z.z, in
which nodes represent system entities, while rectangles, ovals, and
diamonds denote processes, files, and sockets, respectively. Edges
indicate dependencies (i.e., system calls) among system entities
with the direction of information flow.
DependencyExplosion.Unfortunately, due to coarse-grained log-
ging at the system-call level, provenance tracking on audit logs has
to assume that the output of a process depends on all its preceding
inputs [55], even though there exists no actual causality. This leads
to the dependency explosion problem, especially for long-running
processes that accumulate dependencies over time. For example, by
backtracking install.sh in Figure 1(a), the administrator identi-
fies 101 incoming network requests (e.g., x.x.x.x and y.y.y.y) in
its ancestry, making it inconclusive where the malicious package
comes. Even worse, the administrator will find hundreds of local
files in the ancestry of z.z.z.z, making it inconclusive whether
or which sensitive file is exfiltrated.
Limitations of Existing Solutions. To mitigate the dependency
explosion, recent work strives to partition a process into finer-
grained execution units [41, 55, 64]. For example, nginx can be
decomposed based on iterations of its network request handling
loops. Alternatively, MCI [54] trains a causal model based on audit
logs with ground-truth provenance and adopts it to predict true
causalities for incoming logs. Elsewhere in the literature, record-
and-replay systems [26] have been extended to track fine-grained
provenance — recording and replaying non-deterministic program
executions and instrumenting programs to propagate taints from
sources to sinks (i.e., system calls of audit logs) [46, 47].

However, we identify several drawbacks in existing solutions,
which are summarized in Table 1. First, most approaches based
on execution unit (or task) partitioning require expert knowledge
to identify unit boundaries and mark them with program instru-
mentation. This indicates that software vendors must ship their
applications with instrumentation, which unfortunately is not un-
der consideration by any vender [68]. Recent studies propose to
replace instrumentation with built-in application logs crafted by
developers [41, 89, 90]. Unfortunately, the quality of application
logs can be highly varied due to factors, e.g., the developer’s subjec-
tive understanding of application runtime behaviors [58, 59]. More
importantly, developers typically maintain application logs in a
trial-and-error manner [57], limiting their reliability for security
solutions. Second, while modeling-based approaches do not require

instrumentation or application logs, they suffer from out-of-order
audit logs generated by concurrent/cooperating applications. Fi-
nally, record-and-replay systems theoretically bring the most signif-
icant benefit because instruction-level provenance can be restored
by performing taint analysis during application replays. However,
they are not widely deployed due to high overhead in both time and
storage. In addition, they also require instrumentation for recording
non-deterministic inputs and tracking taint propagation.

2.3 Fine-grained System Provenance with

Hardware Enhancement

Considering the limitations above, one ideal solution is to incorpo-
rate fine-grained provenance into system auditing without applica-
tion instrumentation/logging. Towards this end, we take inspiration
from the recent developments of hardware-assisted processor trac-
ing (PT) that enables collecting transfers of control during program
executions. Intuitively, PT forms the basis of non-intrusively re-
covering applications’ execution history and tracking data flow at
the instruction level. Thus, we propose to enrich audit logs with
instruction-level details from PT to resolve fine-grained provenance.

By applying this intuition to our running example, we aim to
generate the provenance graph in Figure 1(b). It concisely captures
the ancestry (wget connecting to y.y.y.y) of install.sh and
the progeny (nginx connecting to z.z.z.z) of secret.txt. Since
substantial false causalities (e.g., wget connecting to x.x.x.x) are
removed, we assist analysts in quickly understanding how the
attacker gains access to the server and leaks the sensitive file.

While promising, there exist two major technical challenges: (1)
efficient taint tracking using PT traces; (2) effective correlation of
audit logs and PT traces. We solve these challenges through two
design innovations. For efficient taint tracking (Section 4), we first
statically analyze application binaries to identify instructions that
possibly reach both input (e.g., read) and output system calls (e.g.,
write) at runtime. In this way, we can selectively propagate taints
only for instructions of interest in which fine-grained provenance
among audit logs will be resolved. Furthermore, we pre-summarize
taint propagation logic for instructions at a coarser granularity (i.e.,
basic blocks in our design), so that taint analysis on PT traces can be
pre-computed and simplified. Note that this paper uses taint propa-
gation logic and tainting logic interchangeably. To correlate audit
logs and PT traces (Section 5), we associate PT traces with the cor-
responding process IDs (PID) at runtime. Then, we recover process
execution paths and identify the constituent syscall instructions.
Thereafter, system-call-level logs and instruction-level traces per
process can be aligned through system-call sequences, and taint
propagation among syscall instructions tracks fine-grained prove-
nance among audit logs of system calls.

In summary, the central idea behind our approach is leveraging
hardware-assisted PT to restore instruction-level information flows
aimed at enhancing system observability for attack provenance.

3 DESIGN OVERVIEW

3.1 Threat Model

In this work, we consider an attacker whose primary goal is to
manipulate or exfiltrate sensitive information present in a system.
To achieve this goal, the attacker may install malware, inject a

3137

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

backdoor, or exploit vulnerabilities of running applications. Similar
to previous research on attack provenance reconstruction [39, 40,
43, 91, 92], we consider OS kernel as part of our trusted computing
base. Hardware trojans and side-channel attacks are beyond our
scope as they are invisible in system audit logs. We also assume that
cyber-attacks are launched after our approach is deployed — system
monitoring has started before the initial compromise. Although
an attacker can escalate privileges to corrupt OS, we assume that
he/she has no way of manipulating previous logs that have recorded
the evidence of privilege escalation.

3.2 PalanTír Architecture

Figure 2 presents a high-level overview of our approach, PalanTír.
It receives audit logs from Linux Audit [25] alongside PT traces
from Intel PT [5] and generates observability-enhanced provenance
graphs for attack investigation. PalanTír consists of three main
phases: static binary analysis (Section 4), runtime monitoring (Sec-
tion 5), and attack provenance analysis (Section 6).

In static analysis, PalanTír first lifts application binaries into in-
termediate representations and constructs their control flow graphs
(CFGs) and call graphs (CGs). Then, it traverses theCGs to identify
functions that potentially reach syscall instructions at runtime.
To minimize the scope of taint analysis, PalanTír further excludes
the functions beyond the lowest common ancestors of syscall
instructions. In this way, we safely remove instructions causally
irrelevant to audit logs of system calls from the analysis. Finally,
PalanTír summarizes tainting logic per basic block in CFGs that
is later queried for taint propagation. Our taint summarization is
based on abstract interpretation [23], a widely used technique in
static binary analysis [21, 51, 76], where concrete program states
are subsumed into abstract domains, and program semantics are
analyzed with abstract semantics.

At runtime, PalanTír captures instructions executed by appli-
cations as PT traces and associates them with PID through a Linux
kernel module. Simultaneously, PalanTír also collects the corre-
sponding audit logs produced by a kernel-space audit framework.

The key idea behind our attack investigation is to use instruction-
level PT traces to resolve fine-grained provenance for system-call-
level audit logs so that coarse-grained dependencies are refined before
causal analysis. Specifically, PalanTír recovers program execu-
tion paths from PT traces, identifies syscall instructions as taint
sources and sinks, and selectively performs taint propagation by
querying taint summaries derived from the static analysis. Once the
taint propagation is done, PalanTír correlates PT traces and audit
logs through system-call sequences, constructs a whole-system
provenance graph from audit logs, and tags dependencies with
tainted syscall instructions. Afterward, given a symptom of an
attack, analysts can precisely connect attack steps by traversing
the fine-grained provenance graph.

4 STATIC BINARY ANALYSIS

PalanTír’s static analysis serves to profile application binaries. At
a high level, PalanTír traverses a binary to identify the scope of
taint analysis and generate summaries of taint propagation logic
per basic block. Specifically, PalanTír adopts angr [78] as the front-
end to lift an application’s binary into VEX IR [77] and construct

Static Binary Analysis

Runtime Monitoring

Audit Log

PT Trace

Attack Provenance Analysis

App
Process

User Space Kernel Space

Intel Processor
Tracing (PT)

Linux Kernel
Auditing

Provenance A
nalysis

Provenance Graph
Tagging

System Causality
Tracking

Tainted SYSCALLs

Threat
Alarm

Attack
Step

App
Binary

Front-End

CFG Refinement

Tainting Logic
Summarization

Taint Summary

Taint A
nalysis

Execution Path
Reconstruction

Selective Tainting

Figure 2: Overview of PalanTír architecture.

its CFG and CG. From the CG, PalanTír first identifies functions
causally related to system calls of audit logs to refine the CFG for
taint summarization (Section 4.1). Then, it performs a context-,
path-, and field-sensitive data flow analysis to summarize taint
propagation logic at the granularity of the basic block (Section 4.2).
Finally, PalanTír stores taint summaries into an in-memory data-
base (Redis [12]) for fast access.

However, static binary analysis commonly suffers from prohib-
itive overhead and false positives [35, 93], making it difficult to
be both scalable and precise. In what follows, we describe how
PalanTír ameliorates its static analysis to achieve high scalabil-
ity and precision. For clarity, we use source code to explain our
analysis procedures, although the real analysis is based on binary.
We perform the analysis at the binary level rather than the source
level for two reasons: (1) PT records binary instructions executed
by CPUs. Unfortunately, it requires non-trivial efforts to convert
the analysis result from source code back to binary due to open
problems, e.g., compiler optimization. (2) binary analysis is agnostic
to programming languages and compilers and can be applied to
proprietary software where source code is usually unavailable.

4.1 CFG Refinement

PalanTír recovers fine-grained provenance by performing taint
analysis on program execution traces collected by PT hardware.
One naïve approach is to propagate taints on the full PT trace.
However, the volume of a PT trace is typically large, imposing a
high overhead in taint analysis. Chen et al. observe that only a
fragment of a program contributes to taint analysis by introducing
taint sources, propagating taints, or reaching taint sinks [20].

Inspired by this observation, we propose to refine the scope
of taint analysis on a PT trace by filtering functions that do not
affect taint propagation among system calls. To illustrate, consider
tracking fine-grained provenance for a web server. Clearly, only the
functions relevant to handling network and file operations should
be included. The remaining functions (e.g., network scheduling)
can be safely skipped without sacrificing provenance precision.
Towards this end, PalanTír seeks to traverse a program’s CG to
locate functions causally related to system calls of audit logs. We
call such functions audit-sensitive ones. It is worth noticing that not
all system calls of audit logs are of interest to provenance tracking
(see [9] for details). For example, process initialization constantly
loads read-only resources, but such resources are “dead ends” from

3138

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

1 ngx_output_chain(ngx_output_chain_ctx_t *ctx, ...){
2 ngx_chain_t *cl, *out, **last_out;
3 out = NULL;
4 last_out = &out;
5 // call pread(fd, ctx->buf->pos, ...)
6 ngx_output_chain_copy_buf(ctx);
7 // allocate a heap buffer to cl
8 cl = ngx_alloc_chain_link(ctx->pool);
9 cl->buf = ctx->buf;
10 *last_out = cl;
11 // out := *last_out := cl
12 ngx_linux_sendfile_chain(out, ...);
13 }

1 ngx_linux_sendfile_chain(ngx_chain_t *in, ...){
2 ngx_iovec_t header;
3 struct iovec headers[SIZE];
4 header.iovs = headers;
5 ngx_output_chain_to_iovec(&header, in, ...);
6 // call writev(fd, &header->iovs, ...)
7 ngx_writev(&header, ...);
8 }

1 ngx_output_chain_to_iovec(ngx_iovec_t *vec, ngx_chain_t *in..){
2 iov = (iovec *)&vec->iovs[n++];
3 iov->iov_base = (void *)in->buf->pos;
4 }

(a) Code Snippets (b) Call Graph

2

3

5 6

4

7

A

B

WritevPread F

C D

E

1

Figure 3: A running example of taint logic summarization. (a) Simplified code snippets denote how nginx-1.20.2 han-

dles HTTP(S) requests. (b) Call Graph of the code snippets. A: ngx_output_chain; B: ngx_output_chain_copy_buf ; C:

ngx_alloc_chain_link; D: ngx_linux_sendfile_chain; E: ngx_output_chain_to_iovec; F: ngx_writev.

N Node ! ∈ ℱ

N Node ! ∈ #$!.nodes

N Node	" ∈$!"#$

N Node ! ∈ #$.nodes

N Node ! ∈ #

A

D

B H

C

FE

I

G

J

Read Write

Figure 4: A Running example for CFG Refinement.

the perspective of attack forensics [79]. Therefore, we filter them
out before traversing the CG.

Given a CG from our front-end, PalanTír first transforms it to
a directed acyclic graph by building a depth-first searching tree
upon the CG and removing all back edges. After that, PalanTír
computes two transitive closures for functions of input system calls
(i.e., read, recv) and output system calls (i.e., write, send), respec-
tively. Nodes in a transitive closure denote the functions, called
syscall-reachable functions F , that can arrive at either input or
output system calls. An intuitive way to identify functions that
emit system calls is searching for syscall instructions in a CFG.
However, we make an observation that a program usually does not
make direct system calls but utilizes standard libraries that provide
equivalent functionalities. Therefore, PalanTír also extracts all
function calls to libc and analyzes the possible system calls they
can invoke. By further calculating the intersection of the two transi-
tive closures, we obtain an audit-sensitive call graph CGA, in which
a node reaches both input and output system calls. Next, PalanTír
extracts all leaf nodes Nleaf fromCGA and recognizes their lowest
common ancestors as the starting functions of tainting scopes. Fi-
nally, we establish a tainting scope P with a starting function and
its succeeding syscall-reachable functions F . Figure 4 illustrates
an example of the CFG refinement procedure, and we present its
detailed implementation as an algorithm in [9].

4.2 Tainting Logic Summarization

Once CFG refinement is completed, PalanTír performs data flow
analysis to generate taint summaries. Here, tainting logic can be
summarized at different granularity: instruction, basic block, or
function. As PT records control flow transfers at runtime, a PT trace
can be viewed as a sequence of basic blocks. Therefore, we adopt
the basic block as the primitive granularity for taint summarization
so that PalanTír can seamlessly map taint summaries to PT traces

for taint propagation. To explain the taint summary, we use the
following x86-64 snippet (in Intel syntax) for illustration.
;input rbp:rbp0, rsi:rsi0, rcx:rcx0

mov rbx, rbp

lea rax, [rbx + rsi]

mov rsi, [rbp + 0x80]

add rbx, rcx

T(rax) := T(rbp0) | T(rsi0)

T(rsi) := T([rbp0 + 0x80])

T(rbx) := T(rbp0) | T(rcx0)

T (reд) denotes the taint tags of reд, and reд0 indicates the initial
taint state of reд. Intuitively, a taint summary presents how taint
propagates within a basic block based on its input state.

Before going into detail, we first introduce the challenges to
achieving scalable and precise taint summarization as follows: (1)
Identify memory alias for uninitialized variables. Since CFG refine-
ment has removed functions beyond the scope of taint analysis,
our summarization usually starts at an uninitialized state where
global structures and/or function parameters are unknown; (2) In-
fer memory reference for nested structures. Data dependencies are
likely nested in structure pointers, demanding data flow tracking
across pointer-rich structures; (3) Reduce computational overhead.
Static analysis is known to over-approximate program behaviors,
leading to an explosion in the number of variable values during
computation; (4) Track dependencies for out-of-scope functions.
Tainting scopes only include functions that reach system calls in a
CG , but out-of-scope functions may also contribute to taint analysis
(e.g., propagating taint sources) among system calls.

To illustrate these challenges, we provide a running example
from Nginx in Figure 3. Suppose function A (ngx_output_chain)
is the starting point of a tainting scope, whose argument ctx is a
structure pointer unknown to PalanTír. If PalanTír cannot iden-
tify the memory that ctx refers to, the data dependency will be lost
when function A calls function B (ngx_output_chain_copy_buf).
Additionally, since function B invokes a pread system call to store
requested HTTP resources in ctx->buf->pos, PalanTír must be
able to track the data flow within the nested pointer from ctx to pos.
Otherwise, PalanTír misses the dependency from pread. More-
over, function C (ngx_alloc_chain_link) is beyond the scope of
taint analysis because it cannot reach any system call. However,
function C allocates a heap buffer to cl later used by a system call
writev to send out data. Therefore, skipping this function in taint
analysis will lose the dependency between pread and writev.

To address these challenges, our solution is to initialize unknown
variables with symbolic values and enable multi-level pointer deref-
erence on them in the analysis of nested structures. For out-of-scope

3139

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

Symbols Y = B~<1>; | 21 ⇤ Y + 22 | [Y] (21, 22 are integers)
Abstract Variables I = Y | > | ?
Abstract Regions A = Heap(Z) (Z : integer set)�� Global(Z)�� Stack(Z)�� Symbol(Z)
Taint Tags U =) (A46B) |) (B~B20;;B) |) (A)
Abstract Values V = I ⇥ 2A ⇥ 2U

Register Map R = A46B ! 2V

Memory Map M = A! 2V
Execution Contexts C = [2B0, ..., 2B8] | ... (2B8 : i-th call site)
Abstract State S = R ⇥M ⇥ C

Figure 6: Abstract Domains.

functions, we track their data flow dependencies within a limited
call depth to balance the trade-off between soundness and scalabil-
ity. More importantly, we design PalanTír’s static binary analysis
upon abstract interpretation [23], which is developed to be flow-,
context-, and field-sensitive.

4.2.1 Abstract Domain. Figure 6 shows the abstract domains
used in our static analysis. We present an abstract variable (i ∈ I) as
a symbol (y ∈ Y) that denotes either a symbolic or concrete variable.
Following the strategy used in under-constrained symbolic execu-
tion [29, 74, 75], we create symbolic variables for unknown function
parameters and/or global structures. We also enable linear and deref-
erence operations on them to generate new symbols. For example,
the structure pointer ctx and its first member ctx->buf->pos in
Figure 3 are presented as symbols ctx_s and [[ctx_s]] (i.e., [[ctx_s
+ 0x0] + 0x0]), respectively.

Our abstract value (v ∈ V) is composed of an abstract variable
(i ∈ I), a set of abstract regions (A ⊆ A), and a set of taint tags
(U ⊆ U). Formally, we define it as a triple v := ⟨i,A,U ⟩: First,
the abstract variable i represents the variable that one register or
memory cell contains. Note that, i can represent either a concrete
variable, when i = y (y ∈ Y,y = c2), or a symbolic one. Second,
each abstract region (a ∈ A) represents the type of a memory cell
(e.g., stack and heap) and its location that abstract valuev can point
to. Specifically, Stack(o) denotes a stack frame at the offset o, Heap(o)
denotes a heap object at the offset o, Global(o) denotes a global
cell at the address o, and SymLoc(y,o) denotes a symbolic memory
address at the offset o of the symbolic base address y. Third, a taint
tag (u ∈ U) represents the data flow dependency within abstract
value v . Specifically, tag T (reд ∈ reдs) denotes v’s data flow from
the register reд, while T (s ∈ syscalls) from the system call s and
T (a) from the abstract region a.

Recall that our static analysis summarizes taint propagation logic
at the basic block granularity. Thus, each abstract state (S ⊆ S)
denotes a program state for a basic block under a specific execution
context. S maintains a register map (R ⊆ R) and a memory map
(M ⊆ M) that contain abstract values. The context (C ⊆ C) describes
the execution context during the static analysis. Formally, we define
an abstract state as a triple S := ⟨R,M,C⟩. Note that PalanTír’s
static analysis inevitably over-approximates program behaviors,
and thus each register or memory cell usually contains a set of
valid/invalid abstract values. Similarly, an abstract value can include
a set of valid/invalid abstract regions to point to.

4.2.2 Abstract Semantics. Figure 7 shows our abstract seman-
tics defined based on VEX IR. We use X [k] to represent the (k)-th

G((,CONST(2)) =
⇢ { h2, {Global(2) },q i } if 2 2 30C0_B42C8>=

{ h2,q,q i } otherwise (2 2 Z)

G((, BinOP(41, 42)) = OP((, 41, 42) where OP 2 {ADD, SUB, ...}

G((,GET(A46)) =
⇢

([0] (A46) if A46 2 ([0]
�BB86=+0;B ((,)>(~<1>; (A46), A46) otherwise

G((, LOAD(4)) =
ÿ

E2G((,4)
{!>03"4< ((,0) | 0 2 E [1] }

!>03"4< ((,0) =
⇢

([1] (0) if 0 2 ([1]
�BB86=+0;B ((, [)>(~<1>; (0)],0) otherwise

�BB86=+0;B ((, ~, C) = { h~, {SymLoc(~, 0) }, {) (C) }i }
(a) Evaluation of expressions: G(S, e) → V .

H((, PUT(A46, 4)) = ([0] ([0] [A46 7! G((, 4)]
H((, STORE(41, 42)) = ([1] *?30C4 (([1], {E [1] | E 2 G((, 41) }, {E | E 2 G((, 42) })

*?30C4 (",�,+) =
(

" [0 BCA>=67�������! +] if � = {0}
" [01

F40:7������! +] ... [0= F40:7������! +] if � = {01, ...,0= }

�=8C(C0C4 ((,',",⇠) = (
* ' [A 7! –

A2R
–

E2' (A)
{ hE [0], E [1], {) (A) }i }],

" [0 7! –
02M

–
E2" (0)

{ hE [0], E [1], {) (0) }i }],
⇠

+

H(Call((, 5 , 2B)) = (D<<0A8I4 (�=8C(C0C4 ((,([0],([1],([2]), 5 ,([2] � 2B) (2B : callsite)

(b) Evaluation of statements: H(S, stmt).
Figure 7: Abstract Semantics.

element of tuple X . For example, v[1] of an abstract value v returns
its abstract region set A.

First of all, we define G(S, e) → V to evaluate an expression
e given an abstract state S and return an abstract value set V , as
shown in Figure 7a. For a constant expression CONST(c), its return
V only contains a single abstract value v whose taint tag set v[2] is
empty. Therefore, evaluating a constant expression is simple: we
check if the constant c is in the data section. If so, v[1] is assigned
as a set of one global address or otherwise an empty set.

Our design of evaluating register read (GET) and memory load
(LOAD) expressions is the key to achieve multi-level pointer deref-
erence for a symbolic memory address (SymLoc). After looking up
the current S , we determine if the target register reд or memory cell
a is in S’s register or memory map, respectively. If so, we directly
return the corresponding abstract value set in the map. Otherwise,
we assign a new symbolic abstract value to the reд or a. For ex-
ample, in Figure 3, suppose the parameter ctx of function A is
passed by a register reg. When reading the reд, we assign a new
abstract valuev as it is uninitialized (not in S). More specifically, we
first create a symbol using ToSymbol(reд) to represent its abstract
variable v[0]. For clarity, we call the created symbol ctx_s . Then,
v’s taint tag set v[2] is assigned as {T (reд)}, denoting that its taint
flow derives from reд. As ctx is a pointer, we set v’s region set
v[1] as {SymLoc(ctx_s, 0)}. By doing so, v[1] represents a symbolic
region that supports dereference operations. For example, deref-
erencing ctx->buf (ctx’s first member) is to evaluate a memory
load expression whose target memory cell is SymLoc(ctx_s, 0).

By assigning symbolic abstract values, PalanTír can track data
flow dependencies across nested pointers. To be scalable, we design
a parameter Nsym to limit the maximum depth for dereferencing a
symbolic pointer in memory loading. Notice that such a depth limit
will cause unsound analysis of memory load expressions. Nonethe-
less, as demonstrated in our evaluation in Section 8.3, this limit
does not sacrifice the precision of attack investigation, meaning
that our unsound static analysis is forensically accurate.

3140

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Besides that, we define a binary operation as BinOP that per-
forms arithmetic or logical operation (e.g., ADD, SUB) given two
expressions e1 and e2. To evaluateV = G(S,BinOP(e1, e2)), we first
compute two abstract value sets V1 = G(S, e1) and V2 = G(S, e2)
and then handle the semantics of the binary operation (see [9] for
details). Note that the array index is ignored in BinOP when calcu-
lating abstract regions of returned abstract values. That is, all the
array elements are merged into a single abstract region (i.e., array
base). In this way, PalanTír is designed to be array-insensitive, a
common practice in static binary analysis [21].

Next, we define H(S, stmt) to evaluate the statement stmt given
the input state S to update S , as shown in Figure 7b. The semantics
of register write (PUT) is straightforward: PalanTír evaluates
expression e given S to obtain the abstract value set V and then
updates the target register in S withV . For memory write (STORE),
PalanTír inputs two expressions e1 and e2 to evaluate the locations
of target memories A and their abstract values V , respectively. To
update the memoriesA in a memory map M withV , we deliberately
distinguish between strong and weak updates [27] in Figure 7b.

As our analysis performs forward in a tainting scope, we first
initialize each basic block’s input abstract state with a join of its
predecessors’ output states. Then, we initialize taint tags of each
abstract value in the input state. After evaluating every expression
and statement in a block, we identify all registers and memory cells
in the block’s abstract state S and extract their taint tag sets U to
formulate a taint summary. Later, we dump the taint summary of
every block into an in-memory database with the concatenation of
its execution context and address (C ◦ block_addr) as the key.

In particular, when our forward analysis encounters a function
call, it determines whether the target function is within the scope of
taint analysis. If so, we initialize an entry state for it and concatenate
its callsite address cs and execution contextC to start a new analysis
procedure. After this analysis, we take a join of the states of all its
exits (e.g., returns) as its output state (see [9] for details).

Since out-of-scope functions may also contribute to taint propa-
gation, an idea is to force the analysis to step through every out-
of-scope function to ensure the soundness of taint summarization.
However, this design inevitably makes it hard to scale due to the
bursts of execution contexts. To reside at a sweet spot between
soundness and scalability, we present a configurable parameter
Ndep to decide the maximum call depth for the taint summarization
of out-of-scope functions. That is, PalanTír includes out-of-scope
function calls within a limited depth for taint analysis.

Finally, to handle external functions (e.g., libc APIs), we follow
the standard practice [87] to identify functions that invoke system
calls (e.g., fgets) or allocate memories (e.g. malloc) and manually
interpret their semantics for tainting logic summarization.

5 RUNTIME MONITORING

At runtime, PalanTír collects audit logs alongside PT traces. Here,
we focus on Intel’s implementation of PT, but our design can also
be generalized to other PT technologies [1].

5.1 Intel Processor Tracing

To record a program’s execution history, software-based instrumen-
tation techniques (both static [28] and dynamic [17, 62] ones) suffer

from high performance overhead and weak security properties [87].
Therefore, we center our design around Intel PT, a hardware feature
that records program executions efficiently and securely.

After a program is loaded for execution, Intel PT generates a
stream of packets to encode transfers of control. For example, taken-
not-taken (TNT) packets log whether conditional branches are taken
or not, and target instruction pointer (TIP) packets log target ad-
dresses of indirect transfers (e.g., indirect calls and returns). To
decode PT packets into executed instructions, the decoder requires
an additional memory layout of the running program. As such, we
design a kernel module in PalanTír to first take the snapshot of
a program’s initial executable page. Then, we capture executable
pages loaded into memory by intercepting related system calls
(e.g., mmap). Thereafter, we obtain all the necessary information to
completely reconstruct a process’s execution path.

In order to distinguish PT packets across processes, we main-
tain execution traces for processes separately by hooking context
switches. For example, when a clone system call is invoked to
create a task (i.e., process or thread), PalanTír will allocate a new
trace buffer to store its PT packets accordingly. Once a trace buffer
becomes full, Intel PT raises a non-maskable Performance Moni-
toring Interrupt (PMI) that is immediately handled by our kernel
module so that the trace buffer can be flushed without information
loss. Notice that it is unnecessary to monitor every process using
PT as not all processes lead to dependency explosion. As a result,
we further hook the execve system call to allow analysts to attach
PT only on processes of interest (e.g., nginx).

To minimize the performance cost, Intel PT writes packets di-
rectly to physical memory so that memory translation and CPU
caches can be bypassed. For flexibility, we configure Intel PT to
store packets in discontinuous memory spaces through the Table
of Physical Address. Note that Intel PT can only be configured us-
ing the model specific register interface from Ring 0. For example,
MSR_IA32_RTIT_OUTPUT_BASE specifies the base address of ToPA.
This design prevents PT collection from being compromised by
user-space processes.

5.2 Linux Kernel Auditing

Audit logs record system calls that a process has requested at
runtime. To collect whole-system logs, we adopt Linux Audit, a
standard kernel-space monitoring framework widely used in exist-
ing forensics systems [41, 42]. Compared to syscall instructions
recorded in PT traces, audit logs provide additional system-call
parameters and return values. Such auxiliary information forms the
basis of building dependencies among system entities. For example,
the file descriptor in read indicates from which opened file to read.

6 ATTACK PROVENANCE ANALYSIS

With taint summaries from static binary analysis and runtime in-
formation from Linux Audit and PT, PalanTír recovers instruction-
level provenance relevant to audit logs of system calls and con-
structs a fine-grained provenance graph for attack investigation.

6.1 Taint Analysis

We perform taint analysis on PT traces to capture fine-grained
(instruction-level) provenance. Towards this end, we first recover

3141

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

the execution path of a process based on its PT trace and mem-
ory layout. The key idea is to linearly disassemble the memory
from its entry point and sequentially consult PT packets for non-
deterministic branches. For runtime efficiency, Intel PT does not
log any control transfers (e.g., direct calls) that have deterministic
impacts on execution paths. While straightforward, this design
inevitably repeats disassembling the same basic blocks in the mem-
ory due to repetitive program executions (e.g., loops). To avoid
redundant computations, we implement a fast disassembly lookup
technique from Griffin [33]. Specifically, PalanTír first allocates
a heap data structure for every code block in the memory. While
encountering a block in decoding PT packets, it looks up its data
structure to retrieve the disassembled binary. If the block has not
been disassembled, PalanTír then disassembles it and stores the
result back in its heap data structure. By doing so, PalanTír never
wastes time repetitively disassembling the same basic blocks.

In parallel to parsing PT packets, PalanTír identifies syscall
instructions as sources and sinks for taint analysis. We also infer
their system-call numbers by observing the constant integer moved
into the RAX register. Since this observation mainly occurs within
two basic blocks prior to syscall instructions, the inference is a
trivial def-use analysis that can be done on-the-fly.

Given basic blocks recovered from PT traces, PalanTír first
queries their taint propagation logic summarized in Section 4.2.
Then, it performs selective tainting that starts from the source
of input syscall (e.g., read and recv) and ends at the sink of
output syscall (e.g., write and send). To enable taint propagation
for multiple sources of system calls, we use a set to contain taint
tags. Specifically, a new tag will be inserted into the set when an
input syscall (e.g., read) is introduced. Following mainstream
taint tools [45, 69], we maintain taint propagation status (aka taint
state) in maps for registers, memory locations, and symbols.

Recall that a single basic block typically has multiple taint sum-
maries under different execution contexts. To propagate taints ac-
curately along with blocks in a PT trace, we must choose their
taint summaries according to the underlying context. Towards this
end, we use a graph structure to coordinate taint summaries. Each
node in the graph stores a set of summaries under the same execu-
tion context, and edges present how the context changes through
function calls and returns. While propagating taints on a PT trace,
PalanTír traverses the graph by following the sequence of func-
tion invocations in the trace and retrieves taint summaries of basic
blocks by querying their addresses. Meanwhile, PalanTír follows
the tainting logic in summaries to update the tag values in the taint
state. Notice that PalanTír may fail to locate a block in the graph,
indicating that the current block is out of our tainting scopes, i.e.,
causally irrelevant to audit logs. Thus, PalanTír skips it for taint
analysis. When the propagation reaches a sink (e.g., write), Palan-
Tír collects the corresponding taint tag to identify where the taint
originates, which captures fine-grained provenance.

6.2 Provenance Analysis

Given audit logs on end hosts, PalanTír first parses them into a
graph structure called provenance graph [16, 34, 42, 64]. Nodes in
the graph represent system entities with a set of attributes (e.g., PID
and INODE) and edges annotated with the timestamp of occurrences

describe system dependencies (i.e., system calls). Unfortunately, the
graph, constructed from audit logs, is coarse-grained, leading to
dependency ambiguity and explosion in attack investigation.

To refine the coarse-grained provenance graph, we aim to inte-
grate the result of taint analysis on PT traces back to audit logs.
However, a semantic gap exists between low-level PT traces and
high-level audit logs. To bridge the gap, we use system calls as the
connection. Specifically, PalanTír first sorts system-call-level logs
for individual processes in chronological order. Then, it sequen-
tially aligns these logs representing system calls with per-process
syscall instructions decoded from PT traces. Afterward, given the
result of taint propagation among syscall instructions, PalanTír
tags the dependencies of system calls in provenance graphs with
instruction-level data flows. In this way, when performing backward
and forward tracing, PalanTír enables fine-grained provenance
tracking on audit logs.

7 IMPLEMENTATION

We implement PalanTír in 10K lines of C/C++ code and 11K lines
of Python code. To facilitate future research, we make PalanTír’s
source code and experimental data publicly available at [9]. Here,
we present important technical details.
Binary Analysis. We develop PalanTír’s binary analysis atop
angr [78]. To resolve indirect calls in binaries, we adopt a type-
based approach [71], to identify the number and type of parameters
at the callsite and callee functions and then pair them by following
the x64 calling convention. The indirect calls are further refined us-
ing TIP packets in PT traces that record target addresses of indirect
control transfers. Following existing static analyzers [21, 66, 83],
we perform loop unrolling to limit the number of loop iterations.
Specifically, we iterate every loop twice. Despite sacrificing sound-
ness, this design improves the scalability and precision of our static
analysis. Additionally, as PalanTír may follow infeasible program
execution paths in static analysis, we implement opportunistic path
sensitivity from [93] to filter paths with conflicting constraints.
ProvenanceCollection.We collect whole-system audit logs using
Linux Audit with a ruleset covering 32 types of system calls. To
facilitate provenance analysis, PalanTír stores a provenance graph
built upon audit logs into a local graph database (Neo4j [11]) for
visualization. It is worth noticing that not all dependencies in a
provenance graph are necessary for the causal analysis of cyber-
attacks. To reduce “noisy” dependencies while preserving attack-
relevant causalities, we take inspiration from [85] to aggregate
dependencies with identical provenance scope.
PT Trace Parsing. We disassemble PT traces using an open-source
disassembling library, distorm [7]. To support Transactional Syn-
chronization Extensions (TSX) used in modern applications (e.g.,
Wget), PalanTír first uses Intel PT to log TSX events when a trans-
action begins, commits, or aborts. Then, it maintains PT traces to
be disassembled for transactions separately. If a transaction aborts,
PalanTír frees its trace or disassembles it otherwise.

8 EVALUATION

In this section, we evaluate PalanTír by answering the following
research questions (RQs):

3142

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

recvfrom

write

read

…

…

curl

mal.config

x.x.x.x

cp

…

…

mal.config

y.y.y.y

wr
ite

write

/etc/passwd /etc/group

pure-ftpd
rea
d

Figure 8: A simplified provenance graph of Data Leakage.

curl

x.x.x.x

pure-ftpd

y.y.y.ymal.config

/etc/passwd

curl curl… pure-ftpd

y.y.y.y

/etc/group

pure-ftpd pure-ftpd…
recvfrom

write

read

write

Figure 9: Fine-grained provenance of Data Leakage.

RQ1: How effective is PalanTír at attack investigation?
RQ2: What is the performance of PalanTír’s static analysis?
RQ3: To what extent do different design choices in static analysis

affect the effectiveness of attack investigation?
RQ4: What is the (runtime/storage/analysis) cost of PalanTír’s

optimization for attack provenance?
All the experiments are performed on a desktop with Intel(R)

Core(TM) i7-8700 CPU @ 3.20GHz, 16GB physical memory, and a
512GB hard disk drive. The OS is Ubuntu 16.04.6 64-bits LTS.

8.1 Attack Investigation

In this section, we evaluate PalanTír’s effectiveness in attack in-
vestigation. To do so, we use four real-world attacks (watering-hole
attack, data leakage, insider threat, and phishing email) simulated
in a testbed environment. Note that the result of the watering-hole
attack has been presented in Section 2. For the reason of space, we
leave the description of the phishing email in [9].

8.1.1 Data Leakage. An administrator is asked to configure an
FTP server (Pure-ftpd) that will be frequently used for file transfers
within an enterprise. For reference, he has downloaded several con-
figuration templates online using curl. After going through them,
he decides to configure the server based on one of the templates
(mal.config). However, this configuration lacks appropriate user
authentication, allowing public access to arbitrary folders in the
FTP server, even a folder that contains sensitive user information
(e.g., /etc/passwd and /etc/group). One day, an adversary acci-
dentally finds that he has permission to access the sensitive files
via FTP and then downloads them for personal usage.

After several days, the administrator discovers that a user can
read any file on the server. He then starts investigating whether
sensitive files are leaked and what causes the misconfiguration of
the FTP server. Figure 8 shows the resulting provenance graph gen-
erated by a traditional provenance tracking system [52]. It confirms
that sensitive files (e.g., /etc/passwd) are accessed and the miscon-
figuration results from a file (mal.config) downloaded from un-
known websites. However, due to the dependency ambiguity caused
by curl and pure-ftpd, it is difficult for the traditional provenance
tracker to determine if the sensitive data are transferred remotely
and where the configuration file originates. In contrast, as shown in
Figure 9, PalanTír identifies exactly which network sockets send
/etc/passwd and retrieve mal.config, significantly accelerates

…

write

read

cp

secret.cpp

secret.txt
…

secret.cpp

secret.txt
lighttpd

…

x.x.x.x

read

write

Figure 10: A simplified provenance graph of Insider threat.

cp

secret.cpp

secret.cpp

cp

secret.txt

secret.txt

cp … lighttpd

x.x.x.x

lighttpd

x.x.x.x

secret.cpp secret.txt

lighttpd … lighttpdcp
read

write

read

write

Figure 11: Fine-grained provenance of Insider Threat.

the process of attack investigation. We also point out that no matter
how many network sockets curl and pure-ftpd have connected,
by enabling fine-grained provenance tracking, PalanTír only in-
cludes y.y.y.y in the progeny of /etc/passwd and x.x.x.x in
the ancestry of mal.config.

8.1.2 Insider Threat. An engineer of a technology company is
about to quit his job. Before leaving, he plans to steal in-progress
projects from a workstation shared with his team. To exfiltrate the
data, he first transfers (cp) all the project resources (e.g., secret.cpp)
to a Lighttpd hosting folder. Afterward, he downloads these projects
from another low-profile desktop by sending requests to lighttpd.
Being aware of the deployed intrusion detection system, he also
downloads numerous daily documents to disguise the data exfiltra-
tion as a regular software development operation.

The company notices that several undisclosed projects (e.g.,
secret.cpp) are posted online and asks its security team to ini-
tiate a forensic investigation. Using the traditional provenance
tracker [52], the team generates a provenance graph as shown in
Figure 10. Without PalanTír’s assistance, an analyst would ob-
serve that lighttpd extensively interacts with local files, including
secret.cpp, but never knows whether or to which IP address they
are leaked. More importantly, the analyst cannot diagnose if any
other files are exposed to the same IP address. Figure 11 shows
attack causalities tracked by PalanTír. Because PalanTír success-
fully uncovers the fine-grained provenance for cp and lighttpd,
the analyst can quickly trace the dependencies from secret.cpp to
x.x.x.x, which demonstrates how the insider exfiltrates data. By
further performing backward tracking on x.x.x.x, the analyst can
discover the remaining leaked files (e.g., secret.txt). This prove-
nance analysis provided by PalanTír ensures that the company is
aware of attack scopes and stops unnecessary worrying.

8.2 Static Analysis Performance

We evaluate PalanTír’s static analysis using 15 popular Linux
applications, most of which have been widely used in recent work
to evaluate attack provenance [41, 54, 64, 87]. The experimental
results are summarized in Table 2.

Recall that CFG refinement identifies and eliminates CFG nodes
beyond the scope of taint summarization. Despite the cause of
unsound analysis, it decreases the size of tainting scopes by 85%
on average, substantially reducing the overhead of downstream

3143

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

Table 2: Results of PalanTír’s static binary analysis. Refined CFG shows the size and percentage of our tainting scopes refined

from Static CFG. Taint Summary shows the number of basic blocks to be summarized in different execution contexts and their

taint (data) flows. CFG-R, TLS, andTSCdenoteCFG refinement, tainting logic summarization, and taint summary coordination.

Memory and Storage present the peak memory consumption during analysis and storage cost of taint summaries.

Program

Binary

Size

(KB)

Static CFG Refined CFG Taint Summary Time Cost (s)

Memory

(MB)

Storage

(MB)

Nodes Edges Nodes Edges Blocks Flows CFG-R TLS TSC

HAProxy 8,395 69,531 116,803 1,783 (2.6%) 2,750 (2.4%) 2,415 4,496 37.8 47.9 0.8 1184.6 3.5
Varnishd 6,066 45,650 93,163 1,322 (2.9%) 2,342 (2.5%) 21,908 75,502 60.1 809.8 9.5 968.6 46.6

Nginx 5,013 30,709 55,691 2,338 (7.6%) 3,795 (6.8%) 7,294 28,890 16.4 506.7 3.5 4246.9 14.3
Ntpd 4,164 31,325 59,421 4,194 (13.4%) 6,497 (10.9%) 12,930 38,993 18.6 1306.6 6.9 7923.5 24.4

Sendmail 3,965 39,204 77,075 1,911 (4.9%) 3,132 (4.1%) 6,219 26,889 22.1 859.2 1.8 3449.4 10.8
Proftpd 3,510 41,140 82,877 1,275 (3.1%) 2,027 (2.4%) 16,265 61,066 24.5 1942.1 10.2 7799.9 38.8

Curl 3,146 20,160 34,981 4,680 (23.2%) 7,702 (22.0%) 16,337 44,938 15.1 1294.0 3.7 3092.8 25.8
Wget 2,234 22,349 41,044 2,186 (9.8%) 3,526 (8.6%) 14,291 51,439 13.6 1566.9 7.7 4669.9 26.5
Httpd 1,214 39,205 67,983 2,920 (7.4%) 4,742 (7.0%) 39,111 119,754 25.6 2652.4 20.4 2599.8 88.0

Lighttpd 1,495 14,453 25,639 156 (1.1%) 220 (0.9%) 235 642 8.9 2.5 0.1 431.8 1.2
Cupsd 1,078 19,294 39,655 2,200 (11.4%) 3,576 (9.0%) 7,508 20,021 9.6 518.7 2.4 4517.7 12.4

Pure-ftpd 513 6,198 10,750 3,367 (54.3%) 5,713 (53.1%) 26,056 88,195 4.0 1298.2 10.6 2925.4 43.9
Cp 360 5,357 9,552 961 (17.9%) 1,522 (15.9%) 1,541 4,537 3.2 76.1 0.1 828.5 3.1
Zip 220 9,155 16,831 553 (6.0%) 894 (5.3%) 20,748 54,552 4.8 3295.5 10.7 9525.2 41.3

Thttpd 105 4,021 7,249 2,409 (59.9%) 4,111 (56.7%) 5,890 22,107 2.2 295.0 2.6 848.8 10.7

tainting logic summarization. As shown in Table 2, the time cost for
CFG refinement is stable, always within a minute. In contrast, the
overhead for tainting logic summarization is highly varied, ranging
from two seconds (for Lighttpd) to an hour (for Zip).

At first glance, it seems counterintuitive that no relationship
exists between the binary size and the overhead of taint summa-
rization. For example, the summarization of HAProxy (8395KB)
and Lighttpd (1495KB) requires less than a minute, while that of
Zip (220KB) takes almost an hour. To gain further insights, we in-
vestigate the source code of these applications and discover that
PalanTír’s performance is affected by two main factors.

First, different ways of invoking system calls in applications
significantly affect the size of tainting scopes determined by CFG
refinement. Typically, the closer system calls are in a CFG, the
smaller the tainting scope will be. The reason is that PalanTír
defines the scope of taint summarization by calculating the lowest
common ancestors of system calls. For example, in Lighttpd, all the
invocations to read and write system calls appear closely in its
CG. As a result, Table 2 shows that PalanTír includes only 1.1%
of Lighttpd’s CFG nodes in its tainting scope and skips the rest for
taint summarization. Second, since PalanTír’s taint summarization
is context-sensitive, its analysis overhead naturally increases with
the growing complexity of execution contexts. For applications (e.g.,
Zip) with denser CGs, PalanTír usually generates more execution
contexts, resulting in higher overhead to summarize individual
blocks under diverse contexts.

As a further investigation, we present the source code analysis of
Lighttpd, HAProxy, and Zip. Detailed descriptions of HAProxy and
Zip are summarized in [9]. The following code snippet of Lighttpd
represents the only tainting scope identified by our CFG refinement.
This code handles a network request by reading local resources
and writing the response to a remote network socket. As the read
and write system calls appear together and both of them are called

by the same function network_write_file_chunk_no_mmap, CFG
refinement only forms a small tainting scope for them.

It is worth noticing that PalanTír’s static analysis is a one-time
effort for an application. That is, once PalanTír has profiled an
application’s binary, there is no need to re-analyze it until the
application gets updated.

1 /* lighttpd 1.4.53 */
2 static int network_write_file_chunk_no_mmap(server *srv, int fd,

chunkqueue *cq, off_t *p_max_bytes) {
3 chunk* const c = cq->first;
4 ...
5 if (0 != chunkqueue_open_file_chunk(srv, cq)) return -1;
6 ...
7 /* READ: fill server's tmp buffer with requested file */
8 if (-1 == (toSend = read(c->file.fd, srv->tmp_buf->ptr, toSend))) {
9 log_error_write(srv, __FILE__, __LINE__,

"ss","read:",strerror(errno));
10 return -1;
11 }
12 /* WRITE: use server's tmp buffer to send response */
13 wr = network_write_data_len(fd, srv->tmp_buf->ptr, toSend);
14 ...
15 }

8.3 Design of Static Analysis

As static binary analysis plays an important role in PalanTír, we
investigate how its different designs may affect precision and scal-
ability. Specifically, as PalanTír defines Nsym and Ndep to limit
the upper bound of symbolic pointer dereference depth and out-of-
scope function call depth, we evaluate how PalanTír performs in
attack investigation with different values of these two parameters.
We report the results in Table 4. The rows under Min. Effective Pa-

rameter indicate that our static analysis achieves accurate forensic
investigation if both Nsym and Ndep are set above two.

To further study how these parameters affect PalanTír’s scal-
ability, we change each parameter’s value from zero to five while
fixing the other as three. The result shows that Nsym only notice-
ably affects seven of the 15 applications in Table 2. This is because

3144

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 3: Storage cost of the PT traces and audit logs for the programs used in the attack scenarios and PalanTír’s performance

overhead of attack provenance optimization. EPR, TSR, ST, and PGT denote execution path reconstruction, taint summary

retrieval, selective tainting, and provenance graph tagging, respectively.

Attack

Scenario

Program

Statistics Storage (MB) Time Cost (s)

Audit Logs PT Packages Blocks Instructions Audit PT EPR TSR ST PGT

Watering

Hole

Wget 10,265 62,175,669 192,176,614 1,329,321,333 6.4 138 1.095 10.866 0.087 0.160
Nginx 1,830 401,708 1,103,725 5,160,695 1.3 23 0.023 2.815 0.026 0.034

Data

Leakage

Curl 10,309 1,882,471 3,758,138 17,516,456 6.3 22 0.043 9.203 0.142 0.225
Pure-ftpd 25,562 21,402,396 107,684,839 2,833,740,916 17 45 0.460 2.086 0.300 0.437

Insider

Threat

Cp 1,814 134,161 203,802 1,048,907 1.3 8.5 0.009 0.188 0.006 0.035
Lighttpd 4,800 499,995 1,248,778 5,448,715 3.2 18 0.026 0.548 0.008 0.086

Phishing Sendmail 29,433 7,588,895 29,160,413 120,264,352 20 125 0.213 17.518 0.360 0.411

the remaining eight applications (e.g., Cp) are less likely to use
deep nested structures or pointers within the scope of taint analy-
sis. On the contrary, Ndep affects almost all the applications. This
is expected as a higher upper bound of the call depth in out-of-
scope functions leads to more complex execution contexts and thus
more taint summaries. In conclusion, our evaluation justifies that
PalanTír has balanced the trade-off between the precision of attack
investigations and the scalability of static analysis.
Table 4: Results of PalanTír’s static analysis in different

designs. Rows under Min. Effective Parameter indicate the

minimal parameter value needed for accurate attack investi-

gation. Rowsunder Parameter Selection present howPalan-

Tír’s performance changes with different parameter values.

Min. Effective

Parameter

Watering-hole Data Leakage Insider Threat Phishing Email

Wget Nginx Curl Pure-ftpd Cp Lighttpd Sendmail

Nsym 0 2 2 1 1 2 2
Ndep 0 1 0 1 0 0 2

Parameter

Sel. (0-5)

Affected

Programs

Incr. Time(%)

Min/Med/Max

Incr. Memory(%)

Min/Med/Max

#Incr. Taint Flows

Min/Med/Max

Nsym 7/15 6.5%/9.1%/47.3% 3.5%/8.3%/22.4% 4.2%/11.8%/395.3%
Ndep 14/15 65.9%/668.7%/8109.2% 2%/122.2%/756.1% 25.0%/250.8%/6885.8%

8.4 System Performance

Analysis performance. To study PalanTír’s performance, we
measure its time duration at individual analysis phases, includ-
ing execution path reconstruction (i.e., parsing PT traces), taint
summary retrieval, selective tainting, and provenance graph tag-
ging (i.e., aligning PT traces with audit logs). All experiments are
performed five times, and we report the mean results in Table 3.

PalanTír’s analysis overhead generally increases along with the
size of audit logs and PT traces. Upon closer investigation, we find
that most overhead comes from the taint summary retrieval. This
is expected since a single program can produce over ten thousand
taint summaries, and PalanTír has to search for the corresponding
summary for every basic block executed by the program (e.g., over
100 million blocks by Pure-ftpd). From Table 3, we also observe
that PalanTír consistently spends less than 0.5 seconds on selec-
tive tainting. At first glance, this result seems unreasonable as the
taint analysis is known to be time-consuming. However, recall that
PalanTír only propagates taints for the blocks causally relevant
to system calls of audit logs, which reduces the scope and thus the
overhead of taint analysis. More importantly, the complexity of
taint propagation has been simplified by static taint summarization,

which costs PalanTír fewer computations in taint analysis on PT
traces. Note that PalanTír is currently designed using a single
thread, but its performance can be further improved using parallel
PT trace/audit log processing techniques [33, 45, 92].
Storage cost. We evaluate PalanTír’s storage cost with the attack
scenarios used in Section 8.1. Following the common practice in
recent security solutions [24, 33, 44, 46], we design PalanTír to
collect and store audit logs and PT traces on local hosts. As such,
PalanTír’s storage is measured with the at-rest sizes of collected
data on disk, which are summarized in Table 3. Here, for ease of il-
lustration, we only report the storage of audit logs for the programs
that require instruction-level provenance tracking, but note that
PalanTír, in effect, performs system-wide audit logging. To better
justify PalanTír’s practicality, we also conduct whole-system PT
tracing (excluding the OS) on a server for seven days. The server is
used by a lab student daily for development, research, and admin-
istration (e.g., hosting personal websites). In our experiment, we
observe that PalanTír generates 98.4GB–111.6GB PT data per day.
We would like to point out that the storage of PT traces is tempo-
rary. Once the taint analysis on the traces is completed, they can be
discarded to free space. Eventually, PalanTír only stores audit logs
with hardware-enhanced observability for attack investigation. We
further evaluate PalanTír’ storage cost on long-running services
by stressing web servers with a high frequency of client requests.
The results are summarized in [9].
Runtime overhead. We measure PalanTír’s runtime overhead
using SPEC CPU 2006 benchmarks and real-world programs from
Table 2. The measurement is performed by comparing PalanTír
to the baseline of Linux Audit with Intel PT disabled. Specifically,
we run the SPEC benchmarks1 with the standard “reference” work-
loads. As for the real-world programs, we adopt either their official
benchmarks, if available, or daily usages (explained in [9]). In par-
ticular, the SPEC benchmarks indicate CPU-bound cases, while the
programs from Table 2 present IO-bound cases.

As shown in Figure 12, PalanTír introduces an average over-
head of 4.5% on the SPEC benchmarks and 3.7% on the real-world
programs. Our experiments demonstrate that PalanTír only incurs
negligible performance slowdown to enable fine-grained prove-
nance tracking. An interesting observation is that the overhead for
different programs can be highly varied, ranging from 1% to 28%,
1PalanTír is not evaluated on all the SPEC programs because some of them (e.g.,
481.wrf) cannot be compiled on our system [33].

3145

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

0%

5%

10%

15%

20%

25%

30%

40
1.b
zip
2

40
3.g
cc

42
9.m

cf
43
3.m

ilc
44
4.n
am
d

44
5.g
ob
mk

45
3.p
ov
ray

45
6.h
mm

er
45
8.s
jen
g

46
2.l
ibq
ua
ntu

m
46
4.h
26
4re

f

47
0.l
bm

47
1.o
mn

etp
p

47
3.a
sta
r

48
2.s
ph
inx
3

48
3.x
ala
nc
bm

k
99
8.s
pe
cra
nd

Av
era
ge

Figure 12: Runtime overhead on the SPEC CPU 2006.

0%

5%

10%

15%

Var
nish

d
Ngi

nx
Pro

ftpd Cur
l
Wg

et
Http

d
Ligh

ttpd

Pur
e-ft

pd Cp Zip
Tht

tpd
Ave

rage

Sen
dm

ail

Figure 13: Runtime overhead on the programs from Table 2.

25%

5%

45%

400%

Nginx CurlWget LighttpdPure-ftpd Cp Sendmail

100%

700%
2400%

2500%

2600%

Figure 14: Comparison of runtime overhead between Intel

PT and app instrumentation using Intel PIN.

which is consistent with previous work [33, 86, 87]. The noticeably
higher overhead results from the programs that have more frequent
control transfers and thus force Intel PT to generate more packets.
We also observe that PalanTír usually incurs higher runtime over-
head on the SPEC benchmarks than our real-world programs. The
reason is that most of the SPEC benchmarks are CPU-intensive,
where PalanTír never stops PT tracing. However, for I/O-intensive
programs (e.g., web and FTP servers), when they wait for I/O, Palan-
Tír does not impose any overhead by Intel PT.

8.5 Empirical Comparison

Processor tracing (PT) vs. App Instrumentation. To under-
stand the advantage of hardware tracing, we compare it with app
instrumentation, particularly Intel PIN [6]. At PIN’s core is a just-
in-time compiler that enables inserting arbitrary code (e.g., for taint
analysis) into a running program. For comparison, we evaluate
the runtime overhead (i.e., slowdown to native app execution) of
PalanTír and nullpin [50] (an implementation widely adopted to

test PIN’s performance). Figure 14 illustrates the results when run-
ning the programs in Table 3 under PT and app instrumentation.
We observe that instrumentation imposes a slowdown ranging from
40% to 2567%, whereas PT significantly outperforms instrumenta-
tion with 3x–436x faster with a slowdown from 2% to 13%. It is
also worth noticing that the overhead of nullpin exclusively comes
from app instrumentation. To support control flow tracing like PT,
it introduces an additional slowdown.
PalanTír vs. Rtag. Rtag [47] is the state-of-the-art system that
supports instruction-level provenance tracking on audit logs. By
using a record-and-replay technology [26], it enables dynamic in-
formation flow tracking (DIFT) on the replay of program executions
to identify fine-grained causalities. For a fair comparison, we assign
the same provenance tracking tasks to PalanTír and the DIFT
engine2 used by Rtag [50]. In Table 5, we report their results of
forensic investigations on four attack scenarios. Here, we measure
PalanTír’s time cost with the duration of taint analysis on PT traces
(from parsing PT packets to taint propagation). Thanks to our static
taint summarization, PalanTír spends 77% to 96% less time than
Rtag on the provenance tracking. Notice that by building atop taint
analysis (or DIFT), both PalanTír and Rtag are inevitably affected
by potential under-tainting and over-tainting problems. However,
we surprisingly find that both approaches achieve zero false pos-
itive/negative in our attack forensics — i.e., the attack causalities
successfully match the ground truth (e.g., where a sensitive file
is sent to). In Section 9, we further discuss how PalanTír could
mitigate the under- and over-tainting problems.

Table 5: Comparison between PalanTír and Rtag [47] on

fine-grained provenance tracking. #FP and #FN denote the

number of false-positive and false-negative roots/ramifica-

tions in attack investigation, respectively.

Attack

Scenario

Program

Time Cost (s) #FP / #FN

Rtag PalanTír Rtag PalanTír

Watering

Hole

Wget 67.93 12.05 0 / 0 0 / 0
Nginx 37.50 2.86 0 / 0 0 / 0

Data

Leakage

Curl 50.03 9.39 0 / 0 0 / 0
Pure-ftpd 78.16 2.85 0 / 0 0 / 0

Insider

Threat

Cp 0.89 0.20 0 / 0 0 / 0
Lighttpd 12.13 0.58 0 / 0 0 / 0

Phishing Sendmail 238.2 18.09 0 / 0 0 / 0

9 LIMITATIONS & DISCUSSIONS

Comparison with value-set analysis (VSA). VSA [14, 15] is a
powerful static binary analysis technique that leverages interval
domains to calculate abstract locations. Specifically, VSA separates
abstract locations into three disjoint regions: Stack, Heap, and
Global. To guarantee soundness, it performs an over-approximation
in tracking memory accesses of abstract locations. However, this
design usually results in imprecise memory alias analysis in real-
world applications [20], especially for uninitialized program states
and/or pointer-rich data structures. For example, in the analysis of
[[rbx + 0x8] + 0x10], VSA returns the memory access of [−∞,+∞],
2We reproduce an extension of libdft [18] to support evaluation on x86_64 architecture.

3146

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

assuming that it can refer to a memory region of an arbitrary offset.
Different from VSA, PalanTír uses symbolic domains to determine
memory accesses. In this way, PalanTír always tracks concrete off-
sets of abstract locations using symbols, even for unknown inputs,
and thus achieves better precision for resolving memory alias.
Threat to Validity. There are four main threats to the validity.
First, our static analysis is designed to trade off soundness for scala-
bility and precision, e.g., by limiting the call depth for out-of-scope
functions. Although PalanTír proves to be forensically accurate in
our evaluation, its unsoundness potentially causes false-negative
causalities in attack investigation. To improve soundness, one pos-
sible strategy is to adopt the bottom-up style analysis [19, 21] to fur-
ther summarize out-of-scope functions that exceed the limit of the
call depth. We leave this extension to future work. Second, Palan-
Tír relies on taint analysis and thus inherits the over-tainting and
under-tainting problems that cause false-positive and false-negative
attack causalities. Technically, these problems are consequences
of inaccurate taint policies — e.g., whether to propagate taints
for variables in a conditional branch — which are open research
problems [22, 45, 69] and orthogonal to PalanTír. That said, mod-
ularity is one of our guiding principles in the design of PalanTír,
where its static analysis can be easily adjusted according to differ-
ent taint policies. Finally, the current PalanTír does not generate
taint summaries for dynamically generated (i.e., jitted) code. While
PalanTír is capable of capturing jitted code by monitoring all the
executable pages loaded into memory, it requires non-trivial efforts
to further enable taint analysis [33]. The key challenge is that jitted
code usually changes over time while PalanTír summarizes taint
propagation logic statically. At last, PalanTír cannot handle GUI-
based applications (e.g., Vim) as they have overly non-deterministic
program states that depend on user inputs.

10 RELATEDWORK

System Auditing. System auditing is a fundamental monitoring
capability with a broad spectrum of security practices, such as attack
scenario reconstruction [13, 42, 73], intrusion detection [37, 81, 92],
alert triage [39, 40], and network troubleshooting [80, 94]. Back-
tracker [52] is the first to represent audit logs into a dependency
graph (aka provenance graph) for attack forensics. To accelerate the
investigation process, PrioTracker [61] prioritizes the provenance
tracking of abnormal (or rare) dependencies. Nodoze [40] makes
an improvement by prioritizing dependency paths rather than in-
dividual dependencies based on rareness. However, the resulting
provenance graph is usually very large due to the overwhelming
volume of audit logs. Even worse, given limited analysis time, ma-
licious activities may be crowded out in the noise of benign logs.
In order to scale up provenance-based investigation, recent studies
strive to eliminate irrelevant activities from audit logs [38, 56, 79]
and increase the efficiency of log queries [30, 32, 67]. Another line
of research aims for a higher-level summary of malicious activities.
Holmes [68] abstracts audit logs into a high-level scenario graph
(HSG) by matching system activities against a knowledge base of
Tactics, Techniques, and Procedures (TTPs) and connecting them
with information flow. Similarly, RapSheet [39] identifies TTPs
from audit logs to construct a tactical provenance graph (TPG)
that conforms to kill chains of advanced persistent attacks (APT)

defined by MITRE. Dependency explosion is another important
drawback that hinders provenance analysis. There exists a rich lit-
erature to address this problem, which can be roughly categorized
into three directions: execution-unit partitioning [41, 55, 64], model-
based inference [54], and taint tracking [46, 47]. Nonetheless, these
techniques require manual assistance to perform application instru-
mentation or logging, which are either not acceptable or practical
in deployment. PalanTír provides the first attack investigation sys-
tem that combines system-call-level audit logs and instruction-level
PT traces without any modifications to applications.
ProgramDiagnosis using PT. Processor tracing (PT) has recently
attracted increasing attention due to its high efficiency in recording
program executions. Extensive literature exists on the use of PT for
program diagnoses, such as root cause analysis [24, 48, 49, 84, 88],
bug reproduction [95], and bug hunting [86]. Gist [49] presents
the first failure sketching system that leverages PT to identify race
conditions. Lazy Diagnosis [48] relies on PT to track thread inter-
leavings and detect concurrency bugs. POMP [84] and REPT [24]
perform reverse debugging of program failures by tracking informa-
tion flow on PT traces. ARCUS [88] further helps interpret the root
causes of failures by answering “what if” questions via symbolic
execution. BunkerBuster [86] also conducts symbolic execution on
PT traces but for the purpose of bug hunting. PT-assisted control-
flow integrity (CFI) enforcement is another popular research area.
While FlowGuard [60] and PT-CFI [36] leverage PT to accelerate
the detection of CFI violations, Griffin [33] and µCFI [44] adopts it
to enforce finer-grained CFI policies. MARSARA [87] demonstrates
the first CFI violation attack in audit log analysis and presents a new
defense to validate the integrity of audit logs based on PT. PalanTír
presents the first attack investigation system that incorporates au-
dit logs with PT traces to reason about fine-grained provenance and
solves the dependency explosion problem in provenance tracking.

11 CONCLUSION

In this paper, we present an observability-enhanced attack investiga-
tion system, PalanTír. It takes the first step to bringing the benefits
of hardware tracing to attack provenance reconstruction. By in-
corporating hardware-assisted processor tracing (PT), PalanTír
achieves efficient program execution monitoring. Then, it selec-
tively propagates taints based on PT traces to resolve instruction-
level provenance. PalanTír also leverages static binary analysis
to generate taint summaries to accelerate the taint analysis. In our
evaluation against real-world cyber-attacks, PalanTír shows its
advantage in supporting efficient and effective provenance analysis.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful feedback in
finalizing this paper. We also thank Zheng Leong Chua, Kaihang Ji,
Jiahao Liu, Jianing Wang, and Yuancheng Jiang for their valuable
discussions. This research is supported by the National Research
Foundation, Singapore under its Industry Alignment Fund – Pre-
positioning (IAF-PP) Funding Initiative. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not reflect the views of National
Research Foundation, Singapore.

3147

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

REFERENCES

[1] 2011. ARM Embedded Trace Macrocell. https://developer.arm.com/
documentation/ihi0014/q/Introduction. Online; Accessed 29 March 2022.

[2] 2015. Hacker group that hit Twitter, Facebook, Apple and Microsoft intensi-
fies attacks. https://www.computerworld.com/article/2945652/hacker-group-
that-hit-twitter-facebook-apple-and-microsoft-intensifies-attacks.html. Online;
Accessed 1 April 2022.

[3] 2019. Equifax Information Leakage. https://en.wikipedia.org/wiki/Equifax. On-
line; Accessed 9 March 2021.

[4] 2020. Twitter hack. https://www.theguardian.com/technology/2020/jul/15/
twitter-elon-musk-joe-biden-hacked-bitcoin. Online; Accessed 25 March 2020.

[5] 2021. Intel Processor Trace. https://man7.org/linux/man-pages/man1/perf-intel-
pt.1.html. Online; Accessed 29 March 2022.

[6] 2021. Pin: A Dynamic Binary Instrumentation Tool. https://www.intel.
com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html. Online; Accessed 1 August 2022.

[7] 2021. Powerful Disassembler Library For x86/AMD64. https://github.com/gdabah/
distorm. Online; Accessed 6 April 2022.

[8] 2021. SolarWinds: How Russian spies hacked the Justice, State, Treasury, Energy
and Commerce Departments. https://www.cbsnews.com/news/solarwinds-hack-
russia-cyberattack-60-minutes-2021-02-14/. Online; Accessed 17 August 2021.

[9] 2022. Artifact Release and Appendix. https://github.com/Icegrave0391/Palantir.
[10] 2022. Linux Kernel Audit Subsystem. https://github.com/linux-audit/audit-kernel.

Online; Accessed 10 March 2021.
[11] 2022. Neo4j Graph Database. https://neo4j.com. Online; Accessed 6 April 2022.
[12] 2022. Redis. https://redis.io. Online; Accessed 6 April 2022.
[13] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay

Celik, Xiangyu Zhang, and Dongyan Xu. 2021. ATLAS: A Sequence-based Learn-
ing Approach for Attack Investigation. In USENIX Security Symposium (USENIX).

[14] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. 2005.
CodeSurfer/X86—A Platform for Analyzing X86 Executables. In International
Conference on Compiler Construction (CC).

[15] Gogul Balakrishnan and T. Reps. 2004. Analyzing Memory Accesses in x86
Executables. In International Conference on Compiler Construction (CC).

[16] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-
worthy whole-system provenance for the Linux kernel. In USENIX Security Sym-
posium (USENIX).

[17] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infras-
tructure for adaptive dynamic optimization. In International Symposium on Code
Generation and Optimization (CGO).

[18] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In IEEE Symposium on Security and Privacy (S&P).

[19] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Morley
Mao. 2015. Static Detection of Packet Injection Vulnerabilities: A Case for Iden-
tifying Attacker-Controlled Implicit Information Leaks. In ACM Conference on
Computer and Communications Security (CCS).

[20] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. SelectiveTaint: Efficient
Data Flow Tracking With Static Binary Rewriting. In USENIX Security Symposium
(USENIX).

[21] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. 2021. NtFuzz: Enabling
Type-Aware Kernel Fuzzing on Windows with Static Binary Analysis. In IEEE
Symposium on Security and Privacy (S&P).

[22] Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Prateek Saxena, Zhenkai
Liang, and Purui Su. 2019. One Engine To Serve’em All: Inferring Taint Rules
Without Architectural Semantics.. In the Symposium on Network and Distributed
System Security (NDSS).

[23] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation of
fixpoints. In ACM Symposium on Principles of Programming Languages (POPL).

[24] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. 2018. REPT: Reverse debugging of failures in deployed
software. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[25] Audit Daemon. 2021. Linux Audit Daemon. https://github.com/linux-audit/audit-
userspace. Online; Accessed 12 March 2021.

[26] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen.
2014. Eidetic systems. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[27] Isil Dillig, Thomas Dillig, and Alex Aiken. 2010. Fluid Updates: Beyond Strong
vs. Weak Updates. In ACM European Conference on Programming Languages and
Systems (ESOP).

[28] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary Rewriting
without Control Flow Recovery. In ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI).

[29] Dawson Engler and Daniel Dunbar. 2007. Under-constrained execution: Making
automatic code destruction easy and scalable. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA).

[30] Peng Fei, Zhou Li, Zhiying Wang, Xiao Yu, Ding Li, and Kangkook Jee. 2021. SEAL:
Storage-efficient Causality Analysis on Enterprise Logs with Query-friendly
Compression. In USENIX Security Symposium (USENIX).

[31] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical
study on logging practices in industry. In International Conference on Software
Engineering (ICSE).

[32] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. 2018. SAQL: A
Stream-based Query System for Real-Time Abnormal System Behavior Detection.
In USENIX Security Symposium (USENIX).

[33] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control
flows using intel processor trace. In International Conference on Architectural
support for programming languages and operating systems (ASPLOS).

[34] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance auditing
in distributed environments. In International Middleware Conference.

[35] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-Miner:
Uncovering Memory Corruption in Linux. In the Symposium on Network and
Distributed System Security (NDSS).

[36] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI: Trans-
parent Backward-Edge Control Flow Violation Detection Using Intel Processor
Trace. In ACM Conference on Data and Applications Security (CODASPY).

[37] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime provenance-based detector for advanced persistent
threats. In the Symposium on Network and Distributed System Security (NDSS).

[38] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards scalable cluster auditing through grammatical inference over
provenance graphs. In the Symposium on Network and Distributed System Security
(NDSS).

[39] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical Provenance
Analysis for Endpoint Detection and Response Systems. In IEEE Symposium on
Security and Privacy (S&P).

[40] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. NoDoze: Combatting Threat Alert Fatigue
with Automated Provenance Triage. In the Symposium on Network and Distributed
System Security (NDSS).

[41] Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta, and Adam Bates. 2020.
OmegaLog: High-fidelity attack investigation via transparent multi-layer log
analysis. In the Symposium on Network and Distributed System Security (NDSS).

[42] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott Stoller, and VN Venkatakrishnan. 2017. SLEUTH: Real-
time attack scenario reconstruction from COTS audit data. In USENIX Security
Symposium (USENIX).

[43] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. 2020. Combating Dependence
Explosion in Forensic Analysis Using Alternative Tag Propagation Semantics. In
IEEE Symposium on Security and Privacy (S&P).

[44] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R.
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing Unique Code Target Property
for Control-Flow Integrity. In ACM Conference on Computer and Communications
Security (CCS).

[45] Kaihang Ji, Jun Zeng, Yuancheng Jiang, Zhenkai Liang, Zheng Leong Chua,
Prateek Saxena, and Abhik Roychoudhury. 2022. FLOWMATRIX: GPU-Assisted
Information-Flow Analysis through Matrix-Based Representation. In USENIX
Security Symposium (USENIX).

[46] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. Rain: Refinable attack investigation
with on-demand inter-process information flow tracking. In ACM Conference on
Computer and Communications Security (CCS).

[47] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2018. Enabling refinable cross-host attack
investigation with efficient data flow tagging and tracking. In USENIX Security
Symposium (USENIX).

[48] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy Diagnosis
of In-Production Concurrency Bugs. In ACM Symposium on Operating Systems
Principles (SOSP).

[49] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George
Candea. 2015. Failure Sketching: A Technique for Automated Root Cause Diagno-
sis of in-Production Failures. In ACM Symposium on Operating Systems Principles
(SOSP).

[50] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. 2012. libdft: Practical dynamic data flow tracking for commodity
systems. In ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE).

[51] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An abstract
interpretation-based framework for control flow reconstruction from binaries. In
International Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI).

3148

https://developer.arm.com/documentation/ihi0014/q/Introduction
https://developer.arm.com/documentation/ihi0014/q/Introduction
https://www.computerworld.com/article/2945652/hacker-group-that-hit-twitter-facebook-apple-and-microsoft-intensifies-attacks.html
https://www.computerworld.com/article/2945652/hacker-group-that-hit-twitter-facebook-apple-and-microsoft-intensifies-attacks.html
https://en.wikipedia.org/wiki/Equifax
https://www.theguardian.com/technology/2020/jul/15/twitter-elon-musk-joe-biden-hacked-bitcoin
https://www.theguardian.com/technology/2020/jul/15/twitter-elon-musk-joe-biden-hacked-bitcoin
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/gdabah/distorm
https://github.com/gdabah/distorm
https://www.cbsnews.com/news/solarwinds-hack-russia-cyberattack-60-minutes-2021-02-14/
https://www.cbsnews.com/news/solarwinds-hack-russia-cyberattack-60-minutes-2021-02-14/
https://github.com/Icegrave0391/Palantir
https://github.com/linux-audit/audit-kernel
https://neo4j.com
https://redis.io
https://github.com/linux-audit/audit-userspace
https://github.com/linux-audit/audit-userspace

PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[52] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. In ACM Sym-
posium on Operating Systems Principles (SOSP).

[53] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M Chen.
2005. Enriching Intrusion Alerts Through Multi-Host Causality.. In the Sympo-
sium on Network and Distributed System Security (NDSS).

[54] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela F Ciocarlie, et al.
2018. MCI: Modeling-based Causality Inference in Audit Logging for Attack
Investigation. In the Symposium on Network and Distributed System Security
(NDSS).

[55] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In the Symposium on Network
and Distributed System Security (NDSS).

[56] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: garbage
collecting audit log. InACMConference on Computer and Communications Security
(CCS).

[57] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E Hassan.
2020. A qualitative study of the benefits and costs of logging from developers’
perspectives. In IEEE Transactions on Software Engineering.

[58] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. 2020. Where shall we log? studying
and suggesting logging locations in code blocks. In International Conference on
Software Engineering (ICSE).

[59] Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. 2022. TELL:
Log Level Suggestions via Modeling Multi-level Code Block Information. In ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).

[60] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. Transparent and Efficient CFI Enforcement with Intel Processor Trace.
In IEEE International Symposium on High-Performance Computer Architecture
(HPCA).

[61] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security.. In the Symposium on Network and Distributed System Security
(NDSS).

[62] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. ACM
SIGPLAN Notices.

[63] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. 2015. Accurate, low cost and instrumentation-free security
audit logging for windows. In Annual Computer Security Applications Conference
(ACSAC).

[64] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In USENIX Security Symposium (USENIX).

[65] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. Protracer: Towards Prac-
tical Provenance Tracing by Alternating Between Logging and Tainting. In the
Symposium on Network and Distributed System Security (NDSS).

[66] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR.CHECKER: A soundy analysis for linux
kernel drivers. In USENIX Security Symposium (USENIX).

[67] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. POIROT: Aligning Attack Behavior with Kernel Audit Records for Cyber
Threat Hunting. In ACM Conference on Computer and Communications Security
(CCS).

[68] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar, and VN Venkatakr-
ishnan. 2019. Holmes: real-time apt detection through correlation of suspicious
information flows. In IEEE Symposium on Security and Privacy (S&P).

[69] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. TaintPipe:
Pipelined Symbolic Taint Analysis. In USENIX Security Symposium (USENIX).

[70] Nathaniel Mott. 2013. Google Reveals ’Watering Hole’ Attack Targeting Apple
Device Owners. https://sea.pcmag.com/security/47209/google-reveals-watering-
hole-attack-targeting-apple-device-owners. Online; Accessed 17 January 2022.

[71] Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens Grossklags, and
Claudia Eckert. 2018. τCFI: Type-Assisted Control Flow Integrity for x86-64
Binaries. In the International Symposium on Recent Advances in Intrusion Detection
(RAID).

[72] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for
Automatic Detection, Analysis, and SignatureGeneration of Exploits on Com-
modity Software.. In the Symposium on Network and Distributed System Security
(NDSS).

[73] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. Hercule: Attack story
reconstruction via community discovery on correlated log graph. In Annual
Computer Security Applications Conference (ACSAC).

[74] David A. Ramos and Dawson Engler. 2015. Under-Constrained Symbolic Ex-
ecution: Correctness Checking for Real Code. In USENIX Security Symposium
(USENIX).

[75] David A. Ramos and Dawson R. Engler. 2011. Practical, Low-Effort Equiva-
lence Verification of Real Code. In International Conference on Computer Aided
Verification (CAV).

[76] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. Bintrimmer: Towards static binary debloating
through abstract interpretation. In SIG SIDAR Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA).

[77] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In the Symposium on Network and Distributed
System Security (NDSS).

[78] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy (S&P).

[79] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng Xiao, Zhenyu
Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. Nodemerge: template
based efficient data reduction for big-data causality analysis. In ACM Conference
on Computer and Communications Security (CCS).

[80] Benjamin E Ujcich, Samuel Jero, Richard Skowyra, Adam Bates, William H
Sanders, and Hamed Okhravi. 2021. Causal Analysis for {Software-Defined}
Networking Attacks. In USENIX Security Symposium (USENIX).

[81] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, C Gunter, et al. 2020. You are what you
do: Hunting stealthy malware via data provenance analysis. In the Symposium
on Network and Distributed System Security (NDSS).

[82] Wikipedia. 2022. Observability. https://en.wikipedia.org/wiki/Observability.
Online; Accessed 18 January 2022.

[83] Yichen Xie, Andy Chou, and Dawson Engler. 2003. ARCHER: Using Symbolic,
Path-Sensitive Analysis to Detect Memory Access Errors. In ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE).

[84] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017.
POMP: postmortem program analysis with hardware-enhanced post-crash arti-
facts. In USENIX Security Symposium (USENIX).

[85] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High fidelity data
reduction for big data security dependency analyses. In ACM Conference on
Computer and Communications Security (CCS).

[86] Carter Yagemann, Simon P. Chung, Brendan Saltaformaggio, and Wenke Lee.
2021. Automated Bug Hunting With Data-Driven Symbolic Root Cause Analysis.
In ACM Conference on Computer and Communications Security (CCS).

[87] Carter Yagemann, Mohammad A. Noureddine, Wajih Ul Hassan, Simon Chung,
Adam Bates, and Wenke Lee. 2021. Validating the Integrity of Audit Logs Against
Execution Repartitioning Attacks. In ACM Conference on Computer and Commu-
nications Security (CCS).

[88] Carter Yagemann, Matthew Pruett, Simon P. Chung, Kennon Bittick, Brendan
Saltaformaggio, and Wenke Lee. 2021. ARCUS: Symbolic Root Cause Analysis of
Exploits in Production Systems. In USENIX Security Symposium (USENIX).

[89] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and Yan Chen. 2020.
Uiscope: Accurate, instrumentation-free, and visible attack investigation for
gui applications. In the Symposium on Network and Distributed System Security
(NDSS).

[90] Le Yu, Shiqing Ma, Zhuo Zhang, Guanhong Tao, Xiangyu Zhang, Dongyan Xu,
Vincent E Urias, Han Wei Lin, Gabriela Ciocarlie, Vinod Yegneswaran, et al. 2021.
ALchemist: Fusing Application and Audit Logs for Precise Attack Provenance
without Instrumentation. In the Symposium on Network and Distributed System
Security (NDSS).

[91] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and Jian
Mao. 2021. WATSON: Abstracting Behaviors from Audit Logs via Aggregation
of Contextual Semantics. In the Symposium on Network and Distributed System
Security (NDSS).

[92] Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua,
and Zheng Leong Chua. 2022. ShadeWatcher: Recommendation-guided Cyber
Threat Analysis using System Audit Records. In IEEE Symposium on Security and
Privacy (S&P).

[93] Hang Zhang, Weiteng Chen, Yu Hao, Guoren Li, Yizhuo Zhai, Xiaochen Zou, and
Zhiyun Qian. 2021. Statically Discovering High-Order Taint Style Vulnerabilities
in OS Kernels. In ACM Conference on Computer and Communications Security
(CCS).

[94] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure network provenance. In ACM Symposium on
Operating Systems Principles (SOSP).

[95] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. 2021. Execution Reconstruction: Harnessing Failure Reoccur-
rences for Failure Reproduction. In ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI).

3149

https://sea.pcmag.com/security/47209/google-reveals-watering-hole-attack-targeting-apple-device-owners
https://sea.pcmag.com/security/47209/google-reveals-watering-hole-attack-targeting-apple-device-owners
https://en.wikipedia.org/wiki/Observability

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Running Example
	2.2 Attack Investigation
	2.3 Fine-grained System Provenance with Hardware Enhancement

	3 Design Overview
	3.1 Threat Model
	3.2 PalanTír Architecture

	4 Static Binary Analysis
	4.1 CFG Refinement
	4.2 Tainting Logic Summarization

	5 Runtime Monitoring
	5.1 Intel Processor Tracing
	5.2 Linux Kernel Auditing

	6 Attack Provenance Analysis
	6.1 Taint Analysis
	6.2 Provenance Analysis

	7 Implementation
	8 Evaluation
	8.1 Attack Investigation
	8.2 Static Analysis Performance
	8.3 Design of Static Analysis
	8.4 System Performance
	8.5 Empirical Comparison

	9 Limitations & Discussions
	10 Related Work
	11 Conclusion
	References

