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EREBOR: A Drop-In Sandbox Solution for Private Data
Processing in Untrusted Confidential Virtual Machines

Chugqi Zhang§*, Rahul Priolkarl, Yuancheng Jiang§, Yuan Xiao*®
Mona Vij', Zhenkai Liang®, Adil Ahmad!
National University of Singapore®, Arizona State University!, ShanghaiTech University”, Intel Labs'

Abstract

Confidential virtual machines (CVMs) are designed to protect
data in cloud machines, but they fail in this task in common
Software-as-a-Service (SaaS) cloud environments. In such
settings, the software stack within a CVM, including service
programs and the operating system, that receives and pro-
cesses data may intentionally disclose it to attackers. We
present EREBOR, a sandboxing architecture for CVMs that
processes client data in secure containers, where restrictions
apply to both (a) access by all untrusted outside compo-
nents and (b) the sandbox’s ability to communicate data
through memory and software-controlled direct or covert
exits. EREBOR enables such restrictions through a security
monitor design based on intra-kernel privilege isolation for
CVM, fully compatible with emerging cloud deployments
without requiring host modifications. Under realistic sce-
narios, such as large language model inference and private
information retrieval, EREBOR only adds a performance over-
head of 4.5%-13.2%, demonstrating its practicality in terms of
enabling strong data sandboxing in modern cloud machines.

CCS Concepts: « Security and privacy — Virtualization
and security; Trusted computing; - Software and its
engineering — Operating systems.

Keywords: CVM, Sandboxed Container, OS Design

1 Introduction

Hardware trusted execution environment (TEE) extensions,
like Intel TDX [18], AMD SEV [61], and ARM CCA [5], allow
users to protect their sensitive workload and data in confi-
dential virtual machines (CVMs). These virtual machines are
isolated from an untrusted host platform (e.g., a cloud ma-
chine on a remote server), and thus are designed to protect
data even if the platform is compromised (§2).
Unfortunately, CVMs cannot protect user data in the com-
mon cloud software-as-a-service (SaaS) model. In this model,
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a third-party service provider deploys a service program to
handle data processing requests from different clients (§3.1).
Common examples of such services include private informa-
tion retrieval [10] and cloud-based intrusion detection [9].
Even when deployed within a CVM, client data remains fully
accessible to the CVM software controlled by the service
provider, including the service program and the CVM OS
kernel. Such software may, individually or in collusion with
each other (and even with the untrusted host hypervisor),
leak client data to providers (§3.2).

Protecting client data from the untrusted CVMs software
requires enforcing additional data isolation within the vir-
tual machine, and recent approaches [43, 89] have proposed
techniques to achieve this. These systems rely on CVM parti-
tioning features—specifically AMD Virtual Machine Privilege
Levels (VMPL [44]). Using such features, they instantiate a
security monitor in a privileged CVM partition and use it to
create enclaves akin to SGX [71] in isolated partitions.

While promising for important cloud computing models,
aforementioned systems only provide partial data protection
in our model, and raise deployment hurdles (§3.3). In partic-
ular, enclaves are designed for one-way isolation from the
OS to programs. Programs can directly or covertly disclose
data through system calls or hypervisor calls. Additionally,
leveraging CVM partitioning features for isolation requires
non-trivial changes to the cloud provider’s hypervisor and,
in emerging deployments [6, 53], to their paravisor [4, 28, 97].
This raises deployment challenges from the perspective of a
cloud tenant (i.e., the service provider in our model).

This paper presents EREBOR, a new system architecture for
confidential virtual machines that shields client data in the
remote SaaS model. In contrast to prior systems, EREBOR en-
forces a full sandbox where, in addition to typical enclave pro-
tections, intentional data disclosure by the service provider’s
program is prohibited. EREBOR is also entirely drop-in since
it does not require changes to the cloud provider’s software
infrastructure. We developed a Proof-of-Concept (PoC) for In-
tel TDX, and our evaluation indicates that EREBOR introduces
a modest performance overhead of 4.5%-13.2% compared
to native CVM execution, demonstrating its practicality for
strong client data protection in cloud servers.

The key to EREBOR’s drop-in status is a new CVM security
monitor design based on the notion of intra-kernel privilege
isolation [45, 49-51]. This design virtualizes the hardware
kernel privilege into two modes using only guest-controlled
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features that do not require hypervisor or paravisor changes
(unlike VMPL). The CVM Kkernel runs in a lower privileged
mode, managing most system functions while delegating
only a small set of sensitive operations to the monitor (§5).
Unlike prior privilege isolation solutions, EREBOR’s monitor
is specifically designed for CVMs and leverages advanced
hardware features (e.g., Protection Keys and Control Enforce-
ment Technology) to ensure performance and security.
Leveraging its privileged security monitor, EREBOR im-
plements sandboxed containers, dubbed EREBOR-SANDBOX,
where a service provider’s program executes and provides
a service on data from a single client. EREBOR enforces the
following three properties for each sandbox.
I Resource-efficient memory isolation. To prevent the sandbox
from leaking client data or outside software from accessing
this data through memory interfaces, EREBOR ensures that all
writable regions of the sandbox (where data is processed) are
inaccessible to outside software. Different sandbox runtimes
are still allowed to share common memory regions (e.g., large
databases) in a secure read-only manner to reduce memory
consumption [41]. The monitor enforces the aforementioned
isolation policies by controlling all configuration interfaces
(e.g., page tables) that permit CPU and devices to access
certain memory regions of a CVM (§6.1).

II. Sandbox runtime and exit protection. To prevent the sand-
box from maliciously exiting to outside software and in-
tentionally leaking data, the monitor interposes and appro-
priately handles all exits. Interposition is achieved by con-
trolling the interrupt descriptor table, model-specific reg-
isters, and the guest-hypervisor communication interface.
Using this interposition, the monitor protects the sandbox’s
context state (i.e., registers) at interrupts and exceptions,
and disables system calls and hypercalls from userspace.
EREBOR integrates a Library OS (LibOS) to handle system
call-related functionality within the sandbox boundary. This
functionality includes memory management, file system,
multi-threading, and task synchronization (§6.2).

III. Secure data communication. To prevent client data or pro-
cessing results of this data from ever being accessible to
attackers during network communication, EREBOR provides
end-to-end data shepherding. Specifically, the monitor safely
obtains sensitive data from a remote client, installs it within
a sandbox, and sends back processed results. This is achieved
through an end-to-end secure communication channel be-
tween the client and the monitor, and established using CVM
remote attestation-based authenticated key exchanges. The
attestation interface is controlled by the monitor to avoid
impersonation attacks from the untrusted OS (§6.3).

We implemented a prototype of EREBOR for TDX guest
that runs the Linux kernel (§7). Our prototype includes a Li-
bOS and development toolkit for service providers to execute
their programs in EREBOR-SANDBOX. The LibOS is based on
the well-maintained Gramine [85, 87], and it supports native
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Figure 1. llustration of TDX’s Guest-Host Communication
Interface (GHCI [13]) for synchronous CVM exits.

Linux applications with few changes. We also performed a
detailed security analysis of EREBOR to show that it enforces
strong client data protection in CVMs (§8).

We evaluated EREBOR on an Intel Xeon Platinum (Emer-
ald Rapids) server using both microbenchmarks and real-
world programs—including CPU-bound data processing ser-
vices such as image/graph processing, private information re-
trieval, intrusion detection, and ML inference. As mentioned
earlier, EREBOR introduces a modest performance overhead,
and reduces memory overheads by up to 89.1% compared to
naive solutions, demonstrating its practicality (§9).

2 Background

2.1 Intel Trust Domain Extensions (TDX)

TDX [18] protects the integrity and confidentiality of guest
CVMs. The host TDX module, a trusted Intel-signed soft-
ware, operates in a protected CPU mode and works with
the host hypervisor (VMM) to manage memory and context
switches for CVMs. TDX introduces a privileged tdcall in-
struction, enabling the guest OS to request host TDX module
or VMM operations, such as request memory for device I/O,
passing data to the VMM for VM exit handling, and remote
attestation. This section elaborates on these aspects.

CVM memory protection. CVM guest memory is man-
aged by a secure Extended Page Table (SEPT) controlled
exclusively by the TDX module. Guest memory is divided
into private and shared parts. At runtime, private mem-
ory is protected from untrusted software and device access.
Specifically, external software, including the host hyper-
visor and BIOS, cannot access or modify the guest’s pri-
vate memory. The host hypervisor can only allocate and
reclaim private pages for memory management purposes. De-
vice interactions—MMIO and DMA—are restricted to shared
memory only. DMA is restricted by checks of the host
IOMMU [17]. To convert its memory between private and
shared, a CVM must issue a tdcall to the TDX module.
CVM exit state handling. A CVM may exit either syn-
chronously or asynchronously to the host hypervisor. At all
exits, the guest’s context state (e.g., general-purpose regis-
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Figure 2. Illustration of Intel PKS [24]. At PTEs, each physi-
cal page frame (pfn) is tagged with a protection key (ranging
from 0 to 15). PKS only applies to kernel mode (supervisor)
pages (PTEs that have the U/s flag set to 0).

ters) is securely saved and restored by the TDX module.

1) Asynchronous exits occur due to hardware events that
don’t require input from the CVM (e.g., external device in-
terrupts). The TDX module traps the event, saves the guest
context, and returns control to the host.

2) Synchronous exits are caused by guest software events,

like explicit hypercalls or a few privileged instructions (e.g.,
wrmsr) that the host may emulate. In such cases, TDX defines
the Guest-Host Communication Interface (GHCI [13]) for
CVMs to selectively expose data to host VMM. These exits
(@, Fig. 1) are trapped by the TDX module, which injects a
virtualization exception (#VE) into the guest (@). The guest
handles #VE, prepares the parameters, and executes a tdcall
with the leaf instruction vmcall to exit to host (3-®). Since
tdcall is a privileged instruction, executing it from userspace
triggers a general protection fault (#GP).
Remote attestation. A guest may request the TDX mod-
ule for a CPU-signed CVM attestation digest using tdcall.
The digest contains (a) measurement of the guest’s initial
contents (e.g., firmware and images) and (b) custom data
provided by the CVM. This digest is then sent to a remote
challenger for verification. The custom data is used to estab-
lish a secure channel between the challenger and the CVM
using authenticated key exchange protocols.

2.2 Control Enforcement Technology (CET)

CET [7, 80] enables hardware-assisted control flow integrity
(HW-CFI) for kernel and user modes, preventing adversaries
from manipulating control flow in both forward and back-
ward directions. For forward control-flow protection, CET
introduces indirect branch tracking (IBT) using an instruc-
tion, endbré4. At indirect call or jump targets, the hardware
inspects that the first instruction is endbré4. If endbr64 is
missing, a control protection fault (#CP) is raised to the
kernel. To support backward control-flow integrity, CET
introduces hardware-assisted shadow stacks (SST), which
operate on a per-logical-core and per-task basis. The shadow
stack pointer (SSP) for the kernel mode is managed by the
model-specific register IA32_PL@_SSP.

Kernel mode shadow stacks must reside in write-protected
memory, with each stack possessing a unique token to ensure
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Figure 3. EREBOR’s system model and trust model (from a
client’s point of view).

only one logical processor can activate it at a time. At calls,
exceptions, or interrupt flows, the CPU pushes call site in-
formation onto the shadow stack. Before interrupts (that use
separate kernel execution stacks) or context switches to new
kernel task threads, the OS switches the SSP to the target
shadow stack. Upon returns (via ret or iret), the hardware
verifies the return address against the saved information in
the shadow stack. If verification fails, a #CP is triggered.

2.3 Protection Keys for Supervisor (PKS)

PKS [24] allows thread-local efficient memory access control
at a page granularity within kernel memory regions. As
illustrated by Fig. 2, when PKS is activated on a system
(by setting the control register CR4.PKS bit), each kernel
virtual page is associated with a protection key (ranging
from 0 to 15) specified in its page table entry (PTE). A model-
specific register, IA32_PKRS, manages the memory access
permissions for each protection key on its corresponding
CPU. Depending on the set permissions, a thread’s read or
write access to a page will raise a fault.

3 Motivation
3.1 SaaS Data Processing in CVM

This work considers software-as-a-service (SaaS) data pro-
cessing services inside CVM. This section describes the ser-
vice system model and application model.

System model. This paper considers cloud interactions
among different parties—clients, service provider, and cloud
provider—on a cloud confidential computing platform using
CVMs. Fig. 3 illustrates the system model.

Clients possess sensitive data (e.g., healthcare or financial
information) that they want to send as input to a remote data
processing service. Clients do not trust the service provider,
the cloud provider, or other clients. A client assumes that
these parties may try to steal its sensitive data.

The service provider designs application software that
offers a cloud data processing service to multiple clients. This
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service is deployed within a CVM to appease client privacy
concerns related to processing sensitive data on untrusted
remote machines and/or fulfilling governmental regulatory
requirements (e.g., HIPAA [15], GDPR [11]). Meanwhile, ser-
vice providers rely on CVM to protect their own intellectual
property, given that they may not want to disclose their close-
sourced proprietary algorithms/source code to untrusted
hosts. For cost-efficient deployment, the service provider
serves multiple clients using one CVM.

We assume the service provider is honest but curious—they
deliver functionally correct services, but collect client data
for monetary gain, such as selling it to advertising or analyt-
ics agencies [3]. Honesty can be verified by clients querying
multiple service providers and comparing results, and pro-
viding incorrect services would damage the provider’s repu-
tation. However, data leakage is stealthy and hard for clients
to detect, as they do not control the software stack (§3.2).

Finally, the service provider rents out a CVM from the

cloud provider (e.g., Azure). We assume the cloud provider
is also honest but curious, and they may collude with the
service provider to collect client data.
Service application model. We consider request-response
service applications, where a client submits a request along-
side the data and receives the corresponding response(s). For
each client request, we assume that the service application is
self-contained on the service provider’s CVM (not distributed
across multiple service providers). Furthermore, our focus
is on CPU-based applications, excluding those that rely on
heterogeneous accelerators (e.g., FPGAs). Supporting such
external devices would require the integration of trusted I/O
mechanisms for CVMs, which constitutes an orthogonal and
complementary area of research [16, 19].

Real-world example scenarios. Cloud services like image
processing and graph processing [12] accept multi-modal
data input for various purposes, such as OCR scanning [26],
image segmentation [36], and graph computations. The in-
put data—such as private photos, documents, and user so-
cial network graphs from corporate clients [47]—must be
protected against leakage. Moreover, CPU-powered Al infer-
ence [32] enables cost-effective machine learning (ML) mod-
els on cloud machines to serve client queries. Clients need
to protect query data, which may include sensitive personal
or financial information. Other examples of services include
information retrieval (e.g., from healthcare databases [10])
and cloud-based intrusion detection [9], using corporate data
like employee network traffic and logs.

3.2 Threat Model and Attacker Capabilities

We assume the attackers, including both service providers
and cloud providers, control the CVM’s OS kernel and un-
privileged software (service programs), as well as the host
hypervisor. In addition to attacks that the traditional CVM
model considers (i.e., software or device-based attacks from
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Table 1. Comparison between EREBOR (this work) and exist-
ing CVM data protection solutions.

Protection Approach Data Protection No cloud infra. change
system AV1 AV2 AV3 Paravisor! Hypervisor
Veil [43] Enclave v X X X X

NestedSGX [89]  Enclave v X X X X
EREBOR Sandbox v v 4 v 4

1 Paravisor [22, 28] denotes the privileged component deployed into the CVM by
cloud providers, using CVM partitioning features (e.g., VMPL, §3.3).

the hypervisor), we consider the following attack vectors:

« AV1: OS data retrieval. The OS* may direct the CPU to
read data from the program’s memory regions or convert
these regions to shared CVM memory (§2.1) and retrieve
them using device DMA. The OS may also access data by
reading the program’s state (e.g., register values) while
handling interrupts or exceptions.

« AV2: Program direct data leakage. The service program
may leak data to the OS or hypervisor by using system or
hypervisor call functionalities, such as writing to the disk
file system or sending data over the network.

AV3: Program covert data leakage. The service program
may covertly transmit data to the OS or hypervisor by en-
coding it into parameters (i.e., arguments) and frequency
of system and hypervisor calls [41, 60]. Additionally, a
program may trigger and send user-mode interrupts [35]
to leak data to other attacker-controlled processes without
exiting to the privileged software.

Out-of-scope. We do not consider data leakage through
digital timing-based or micro-architectural side channels.
We discuss their mitigation in §12. Also, we exclude physical
side channels due to their noisy and expensive nature [66].

3.3 CVM Data Protection Solutions and Limitations

Protecting data in our model from aforementioned attack
vectors (AV1-AV3) requires enforcing additional isolation
within CVMs against untrusted software. In this regard, the
approach taken by recent systems [43, 89] is to leverage
CVM partitioning features, particularly AMD Virtual Ma-
chine Privilege Levels (VMPL) [44]. Specifically, Veil [43] and
NestedSGX [89] leverage VMPL to instantiate a privileged
security monitor within an AMD SEV-SNP CVM. Using the
monitor and its partitioning capabilities, they further iso-
late sensitive data into an enclave partition. Like SGX [71],
these enclaves provide one-way isolation, disallowing the
untrusted OS to access program data [41, 60].

There are two problems with employing the aforemen-
tioned solutions to protect data in our system model (Tab. 1).
Partial data protection capabilities. Like SGX, Veil and
NestedSGX consider the software inside an enclave to be
trusted. Thus, the enclave is allowed to communicate with
the operating system using system calls and hypervisor us-

*Unless otherwise specified, the term “OS” refers to the CVM guest OS.
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ing hypercalls. Malicious programs can use this interface and
disclose data to the attacker (AV2-AV3). Therefore, full data
sandboxing with such enclave solutions would require addi-
tional Software Fault Isolation (SFI) techniques [41, 60, 88].
Cloud infrastructure support required. CVM partition-
ing enclave solutions require support from a cloud provider
in terms of making changes to the hypervisor and, in emerg-
ing cloud deployments, the paravisor [4, 28, 97]. Specifically,
changes to the host hypervisor are needed to support the
transition between enclaves and OS for scheduling, inter-
rupt, and exception handling [43]. Additionally, in emerging
deployments, cloud providers leverage CVM partitioning
features to deploy a trustworthy paravisor inside CVMs and
provide cloud infrastructure services like live migration and
firewall management to cloud tenants [22]. In such deploy-
ments, features like VMPL are under the control of the par-
avisor, and implementing solutions like Veil or NestedSGX
would require support from the cloud provider. This creates
a non-trivial barrier for service providers (who are simply
cloud tenants in our model) to deploy such solutions.

4 EREBOR Overview

EREBOR is a sandboxing architecture for CVMs that enforces
full data protection (against AV1-AV3), and can be deployed
as a drop-in solution without changes to the cloud software
infrastructure (i.e., hypervisor or paravisor).

This section describes the assumptions behind our work,
and EREBOR’s architectural components. Since EREBOR’s pro-
totype is designed on TDX, we describe the following sec-
tions using TDX. Moreover, for simplicity, we only describe a
native CVM without a paravisor deployment. We discuss our
analysis and experiments to show EREBOR’s compatibility
with other CVMs and paravisor deployments in §10.

4.1 Assumptions

We trust the CVM hardware and assume that it is free of or
patched against hardware defects [62, 69, 73] and malicious
interrupt injections [78, 79]. In addition, we trust the cor-
rectness of the CVM remote attestation process, including
the hardware mechanisms and software protocols. Moreover,
we trust the CVM boot firmware, like Open Virtual Machine
Firmware [27], provided by the hardware vendor. Last, in the
case of a paravisor-enhanced CVM, we assume the paravisor
is trusted, as they are independently built (e.g., Coconut-
SVSM [4]), open-sourced, and can be formally verified [97].

4.2 System Architecture and Components

Instead of using CVM partitioning features (§3.3), EREBOR
instantiates a lightweight privileged CVM security moni-
tor, dubbed EREBOR-MONITOR, using intra-kernel privilege
isolation [45, 50, 51] techniques (Fig. 4).

The core idea is to isolate the hardware kernel privilege
mode (i.e., ring-0 in TDX) into two virtual modes—privileged
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Figure 4. EREBOR overview. The system achieves sandboxing
through an intra-kernel security monitor design, preventing
the untrusted OS from executing a subset of sensitive privi-
leged instructions by delegating them to the monitor (7).

and normal. In privileged mode, the monitor manages criti-
cal system functions. The kernel, in normal mode, handles
the remaining functions, keeping the monitor’s Trusted Com-
puting Base small. Using this core idea, EREBOR implements
a new security monitor that is specially crafted for CVM
sandboxes and leverages novel hardware features (e.g., Pro-
tection Keys and Control Enforcement Technology) to ensure
performance and security (§5).

There are key benefits of EREBOR-MONITOR’s implementa-
tion in terms of providing sandboxing capabilities in a drop-in
manner. For sandboxing, executing in the (privileged) CVM
kernel mode, the monitor can (a) naturally intercept all in-
teractions between user programs and the operating system
kernel, as well as the outside hypervisor (§2.1) and (b) control
all guest memory configuration interfaces (e.g., page tables)
to further enforce isolation. In terms of a drop-in solution,
the monitor can be designed using techniques and features
that are available natively within a guest virtual machine
boundary and do not require interactions with the hypervi-
sor (e.g., like VMPL does for switching partitions [43]).

The monitor creates special sandboxed containers, called
EREBOR-SANDBOX, with each container dedicated to pro-
cessing a single client’s sensitive data and restricted from
any direct or covert communication with external com-
ponents (§6). The container executes a service provider’s
developed programs with a Library Operating System (Li-
bOS) [81, 85, 87]. All programs within the sandbox container
share the same address space—each process task is converted
into a thread. From EREBOR’s perspective, this approach sim-
plifies the task management and secure communication en-
forcement amongst tasks within the same container. At a
high-level, EREBOR enforces the following three data protec-
tion policies on its sandbox runtimes:

e To prevent data retrieval or disclosure through memory,
EREBOR ensures that all writable regions belonging to sand-
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Table 2. Sensitive privileged instructions and descriptions.

Type | Instruction | Sensitive instruction usage description

mov Write CR0/3/4 to control MMU page table and

CR h

%r, %CR | enable hardware kernel protection features.
wrmsr Configure guest-controlled hardware kernel

MSR protection CPU features (e.g., PKS and CET).

v, %MSR : -
Control system call context switch interface.
SMAP stac Temporarily grzfmt. the kernel mode with read
and write permissions to user memory.

IDT lidt v Control #INT/excpt. context switches.
Request TDX module to convert CVM shared
and private memory for device access.

GHCI tdcall VMexit to the VMM to handle general events.
Request TDX module for attestation digest.

boxes (where data is processed) are isolated from all out-
side software. For efficiency, different sandbox instances
are allowed to share common memory regions (e.g., large
in-memory databases) in a read-only manner (§6.1).

To prevent data leakage during exits, EREBOR interposes
all software-controlled exits and ensures secure handling.
Once client data is received in a sandbox, the monitor
disables all system calls and synchronous exits (including
hypercalls) from the sandbox. To protect the program state
from being exposed at external interrupts, the monitor
securely saves, masks, and restores it (§6.2).

To prevent data leakage during communication, EREBOR
relays data between clients and sandboxes through an
end-to-end secure communication channel (§6.3).

5 MOoNITOR Privileged Mode Enforcement

This section describes how EREBOR virtualizes a privileged
mode in ring-0 to host EREBOR-MONITOR, while deprivileg-
ing the untrusted kernel to the normal mode. At a high-level,
the goal is to allow EREBOR-MONITOR the exclusive ability to
execute a set of sensitive privileged instructions (Tab. 2) that
are critical for sandboxing enforcement (explained in §6) in
a controlled manner. This is achieved using offline instru-
mentation (§5.1), runtime controlled memory configuration
interfaces (§5.2), and gated secure monitor calls (§5.3).

5.1 Kernel Instrumentation and Verified Boot

EREBOR instruments sensitive privileged instructions in ker-
nel source code, replacing them with secure calls to the mon-
itor (§5.3). This allows the monitor to enforce isolation poli-
cies before executing these instructions. In the future, we
expect that the instrumentation could be directly integrated
into mainstream kernels, similar to how Xen-based para-
virtualization was patched into Linux [29]. Instrumentation
correctness is verified by a two-stage boot process.

In the first stage, only the trusted boot firmware (§3.2) and
the EREBOR-MONITOR binary are loaded into the CVM. At
this time, both components are measured by the CVM’s at-
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testation mechanisms, and included within any requested at-
testation digest. Note that the firmware is open-sourced [27],
and the monitor will be open-sourced; thus, a remote client
can attest that these components are correctly loaded.

In the second stage, the monitor receives the instrumented
kernel image, scans it to verify proper instrumentation, and
then loads the kernel. Unlike typical software fault isola-
tion (SFI) systems [41, 60, 81, 93], which require complex
binary disassembly to verify instrumentation at the native
instruction level, EREBOR only needs to ensure that no in-
struction byte sequences form sensitive instructions. Thus,
it only performs byte-level scanning of the executable sec-
tions [51] using an ELF loader. If verification passes, the
monitor loads the kernel and performs relocations, there-
after allowing the (deprivileged) kernel to execute.

5.2 Virtual Privilege Memory Interface Control

EREBOR-MONITOR controls memory interfaces to restrict
CPU and device memory views and enforce isolation poli-
cies between the kernel and itself. Specifically, the kernel is
restricted from bypassing instrumentation to execute sensi-
tive instructions or compromising the monitor’s memory to
break such privilege separations.

Controlled MMU and DMA configuration interfaces.
For CPU access, the monitor exclusively manages the CVM’s
physical MMU interfaces, controlling memory mappings
and page attributes. This is by following the Nested Kernel
principles [51]—only the monitor can execute instructions
that directly or indirectly modify the MMU state and page
table pages and entries (PTPs/PTEs). This is achieved by (a)
sensitive instruction instrumentation and (b) using the kernel
protection key feature (PKS, §2.3) to restrict memory access
restrictions (see §10 for alternatives on other platforms).

To control the MMU state, the monitor instruments MMU-
related control and model-specific registers (CR/MSR in Tab. 2).
To control PTPs, the monitor marks PTP memory as writable
only by the monitor (read-only for normal mode). This is
achieved by assigning a protection key to PTPs, granting the
key non-writable permissions in the normal mode.

For device access, the monitor exclusively controls GHCI

interface (Tab. 2) to restrict allowed DMA mappings (CVM
shared memory) for devices.
Kernel and monitor isolation policy enforcement. The
monitor enforces that the isolated kernel cannot execute
sensitive instructions within its own or userspace memory,
nor access the monitor’s memory.

The monitor enforces Write-xor-eXecute (W®X) permis-
sions when executing the kernel. Thus, the kernel cannot
update its memory to execute sensitive instructions. To do so,
the monitor assigns a non-writable protection key to all ker-
nel code pages. For the remaining kernel writable pages, the
monitor sets those PTEs’ Non-eXecutable (NX) flag. There
are cases in which the kernel may update its executable code
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1 EntryGate: (.att_syntax) 1 ExitGate:

2 endbr64 ;Track indirect branch 2 ;Finished monitor execution
3 ;Save scratch registers 3 ;Switch back to 0S stack

4 mov %rax, -8(%rsp) 4 mov Q(%rsp), %rsp

5 mov %rdx, -16(%rsp) 5 ;Save scratch registers

6 mov %rcx, -24(%rsp) 6 push %rax

7 ;Grant monitor access perm. 7 push %rcx

8 mov IA32_PKRS, %rcx 8 push %rdx

mov $GRANT_ALL, %rax

wrmsr IA32_PKRS

;Switch to monitor stack

mov %rsp, %rcx

mov perCPU(SecureStack), %rsp

;Revoke 0S access perm.
mov IA32_PKRS, %rcx

mov $REVOKE_OS_R_W, %rax
wrmsr IA32_PKRS

;Restore scratch registers

14 push %rcx ;Save 0S stack ptr 14 pop %rdx
15 ;Restore scratch registers 15 pop %rcx
16 mov -8(%rcx), %rax 16 pop %rax

mov -16(%rcx), %rdx
mov -24(%rcx), %rcx

;Return to the 0S
ret

a) bntry gate. xit gate.

Entry gat b) Exit gat

&1};:{1};&“ 42?' Sensitive EMC | 11 v;;?-lesr » Monitor
call/jmp i endbr _nﬁinstr. Y

.............. |Entry gate,” Monitor
/

& --------- esave&revoke 7
I\ mem per (b)
............. h restore

mem perm.

(c) HW-CFI (left) / Interrupt gate (right) guarded EMC execution.

Figure 5. Entry/exit gates for EREBOR-MoONITOR-Call (EMC)
gates and how they are enforced at runtime.

pages, such as loadable kernel modules and eBPF bytecode.
In these cases, the kernel requests the monitor to scan and
verify the code before loading it [43, 51].

To prevent the kernel from executing sensitive instruc-
tions in userspace pages, the monitor always enables kernel-
user execution separation, i.e., Supervisor Mode Execution
Prevention (SMEP) [20]. The monitor achieves it by setting
CR4 . SMEP bit (Tab. 2). SMEP enforces the kernel mode cannot
execute user-level pages (i.e., PTEs with U/S bit as 1).

To ensure the monitor’s integrity and data confidentiality,
the kernel is not allowed to access the monitor’s memory
regions (including the code, data, and execution stacks). To
do so, the monitor assigns a protection key to its own pages.
That key grants the normal mode kernel non-accessible and
non-writable permissions to those monitor pages.

Finally, to restrict untrusted device access, the monitor
ensures that any CVM memory converted to shared (by
tdcall to the TDX module) will always reside in the system-
reserved region for devices. Thus, the kernel and monitor
are private and inaccessible by devices (§2.1).

5.3 Gated Secure Monitor Calls

EREBOR implements a secure interface—EREBOR-MONITOR-
Call (EMC)—for the OS to request sensitive instructions. Each
EMC is bounded by an entry and exit gate, clearly defining
the boundaries for privilege transitions. The OS can only
honestly perform EMCs to request privileged instructions.
Fig. 5-(a,b) illustrate the entry and exit gates. The en-
try gate grants full access to the monitor’s memory and
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switches to a protected per-core execution stack. To grant
memory permissions, the entry gate modifies the IA32_PKRS
MSR of the current core to permit read-write access to the
monitor’s memory (1ine 10-12). Subsequently, the execution
stack is pointed to the monitor’s per-core stack (1ine 14-15).
Throughout the entry gate, the OS’s execution state is se-
curely preserved (line 4,16), ensuring a safe and reversible
context switch. Upon completing the request, the exit gate
reverses the operations and returns to the OS (Fig. 5b).
HW-CFI guarded deterministic EMC execution flow.
EREBOR leverages HW-CFI enabled by CET (§2.2) to ensure
that the OS can only deterministically jump to the start of
the entry gate to enter the monitor and perform an EMC.
Thus, the privilege transition is always safe, and the mon-
itor always enforces proper isolation policies (§5.2) when
executing sensitive instructions (by setting target values).

Fig. 5c-left illustrates the workflow. EREBOR ensures that
only the start of the entry gate has an endbr64 (1ine 2) and
no other part of the monitor does. As a result, forward indi-
rect jmp or call can only jump to the entry gate start (@); any
attempt to target arbitrary monitor code triggers a #CP. Ad-
ditionally, the shadow stack prevents backward function or
exception returns (ret/iret) from arbitrarily altering control
flow into the monitor’s code (@).

To ensure HW-CFI is always active, the monitor configures

its control interfaces (IA32_S_CET MSR and CR4.CET bit).
For backward integrity, the monitor maintains a shadow
stack memory by configuring TA32_PL@_SSP MSR. Per CET
specification [80], kernel shadow stack pages are always
non-writable-but-dirty (by clearing PTE R/W bits, enabling
dirty bit and CR@.WP). Unlike task switches, which require
switching corresponding shadow stacks (§2.2), executing
EMC does not. This is because, from the kernel’s perspective,
an EMC behaves like a normal function call.
Interrupt gate guarded EMC-exclusive permissions.
Once the entry gate is invoked, EREBOR ensures that only the
CPU under EMC execution is granted memory permissions
until completes at the exit gate. In other words, during EMC,
the OS cannot preempt the execution while retaining the
granted permissions to access monitor memory.

The OS may inject Inter-Processor Interrupts (IPIs), or a
hypervisor may inject device interrupts to preempt EMC.
After a CPU gains monitor access permissions at the entry
gate (line 11, Fig. 5a), such interrupts may be triggered to
redirect execution to the OS. The monitor ensures that these
interrupts are handled safely by routing them through a
special and protected interrupt gate (#INT gate in Fig. 5c-
right). To do so, the monitor controls the exception vector
handlers to wrap interrupts with #INT gate (IDT in Tab. 2).
At the interrupt entry, the #INT gate (a) saves all general-
purpose registers, (b) saves the current memory permissions
(i.e., IA32_PKRS value) onto the secure stack and revokes the
permissions to access monitor memory (@), and (c) restores
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Figure 6. EREBOR-SANDBOX memory and permissions.

general-purpose registers and jumps to the OS interrupt
handler. At interrupt returns, the gate performs the same
operations to restore memory permissions (@)).

6 SaANDBOX Data Protection Enforcement

Using its privileged monitor (§5), EREBOR efficiently enforces
data protection within EREBOR-SANDBOX through memory
isolation (§6.1) and sandbox exit protections (§6.2), while
also establishing secure communication channels for data
transfer between the sandbox and clients (§6.3).

6.1 Resource-Efficient Sandbox Isolation

EREBOR ensures that all memory regions of the sandbox
process must be declared before usage, and enforces strict
memory permissions based on the declared type.
Confined and common (shared) memory declaration.
Sandbox memory has two types—confined and common, and
Fig. 6 describes those types and permissions. Confined mem-
ory is used for sandbox process code, data, stacks, runtime
heap, and also for holding client data. Thus, the sandbox
exclusively owns all permissions to its confined memory. On
the other hand, common memory is read-only to a sandbox,
thereby allowing shared instances (e.g., ML model, databases,
or shared libraries) across sandboxes.

During initialization, the sandbox sends a request to
the monitor and declares all required confined memory re-
gions (§7). This is transparently done by the LibOS, which
leverages a special device driver to send EMC. Note that the
service provider is responsible for setting up the memory
budget (hard limit) for a container’s confined memory.

EREBOR-MONITOR allocates confined sandbox pages from
a reserved memory region (§7) and pins them (i.e., no swap-
ping to disk). Pinning of confined pages is primarily to avoid
leaking secrets by page faults, and in the future, a secure
page fault handling mechanism can be implemented [76]. In
contrast, common pages are large and do not contain secrets,
thus they are not pinned. Rather, the monitor allocates them
using its default filesystem (shm) backend or using anony-
mous shared memory during mmap (MAP_ANONYMOUS).
Access permission restrictions on sandbox memory.
EREBOR-MONITOR controls the MMU interface to enforce
CPU access permissions on sandbox memory (Fig. 6). De-
vice DMA access permissions to the sandboxes are further
restricted by controlling the GHCI interface (§5.2).

To prevent other processes from accessing a sandbox’s
confined pages, the monitor keeps a single mapping policy for
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these pages. Once a page is declared as confined and mapped
to a sandbox, the monitor refuses to map it further to other
processes (or even the kernel) page tables. This prevents
double-mapping attacks to access confined pages.

To further prevent the kernel from accessing sandbox
confined pages within the same task context (e.g., at in-
terrupts), the monitor enables kernel-user memory access
separation, specifically Supervisor Mode Access Prevention
(SMAP) [20]. The monitor always sets the CR4 . SMAP bit (CR,
Tab. 2), thereby enforcing that the kernel cannot access user-
level pages by walking the sandbox’s user page table.

Note that SMAP can also be temporarily ignored in the
kernel by executing a stac instruction. Thus, EREBOR treats
it as a sensitive instruction and removes it from the ker-
nel (SMAP in Tab. 2). One side-effect is that the kernel cannot
access user regions even for native (non-sandboxed) pro-
grams, which is required for native system call handling
such as read/write with userspace buffer parameters. To
support that, the monitor interposes the user copy [14] inter-
faces (i.e., copy_from/to_user()) from the OS. When such a
request happens, the monitor emulates the operations on be-
half of the OS and then revokes the temporal user-level page
access permission (using the clac instruction) afterward.

EREBOR-MONITOR enforces sandbox read-only permis-
sions on common memory at runtime, by controlling page
table attributes. Before receiving client secret data (§6.3),
sandboxes can normally write to common memory to initial-
ize shared instances. Once client data is loaded, the monitor
clears the Write (W/R) bit in the relevant page table entries
(PTEs), revoking sandbox write access permission.

Finally, the monitor achieves device access prevention
by controlling tdcall (GHCI), always marking all sandbox
memory as CVM private memory (§5.2).

6.2 Sandbox Runtime and Exit Protection

Once EREBOR-SANDBOX receives client data, the sandbox re-
quired critical runtime services [46, 86] are emulated by the
LibOS. To further prevent untrusted programs from leaking
data by compromising the LibOS and inducing system calls
or VM exits, EREBOR-MONITOR intercepts sandbox software-
controlled exits alongside asynchronous exits (e.g., inter-
rupts) to the OS, ensuring secure handling.

Runtime system service emulation within the LibOS.
The LibOS emulates the following four runtime services.

1) Heap memory management. During initialization, the Li-
bOS pre-allocates all memory and declares them as confined
memory for sandbox runtime heap allocation (brk/mmap).

2) In-memory stateless filesystem. The LibOS preloads all
required files (e.g., libraries) into the sandbox and creates
in-memory mountpoints before receiving client data. Once
the client data is received, the sandbox operates statelessly
for the remainder of its execution by creating temporary
in-memory files (maintained in confined memory).

3) Multi-tasking and synchronization. The LibOS supports
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Figure 7. EREBOR-SANDBOX exit interposition procedure dur-
ing runtime, after receiving and installing client data.

sandbox multitasking using threads. The maximum number
of threads is predetermined, and all threads are created dur-
ing initialization (by clone). Synchronization between normal
threads is enabled using system calls like futex, but this is not
possible in sandboxes as they are disabled during data pro-
cessing. Following the practice of SGX SDK [39], EREBOR’s
LibOS manages userspace synchronization internally using
its own spinlock. This increases resource utilization due to
busy-waiting, but avoids covert channel leaks.

4) Client data communication services. EREBOR does not
allow the sandbox to establish network connections. Thus,
the sandbox relies on the monitor to communicate data with
the client (i.e., receiving client input data and sending output
data to the client, further explained in §6.3).

Sandbox exit interposition and protection. All exits
from the sandbox are intercepted by the monitor, which
inspects the exit reason and handles it accordingly.

To interpose exits, the monitor controls the sandbox’s con-
text switch interfaces (MSR, IDT, and GHCI in Tab. 2). Specifi-
cally, user-and-kernel system call is interposed by loading a
special entry (through TA32_LSTAR MSR), while exceptions
and interrupts are interposed by a special exception vector
table entry. Those special entries redirect execution to the
monitor’s handler first. On the other hand, the monitor set-
ting user-target table (IA32_UINTR_TT MSR) to determine
whether to disable user-mode interrupts (explained below).

Once client data is loaded, the monitor kills the sandbox if
it exits through system calls, or due to VM exits (identified by
#VE, @ in Fig. 7). It is acceptable to disable VM exits—from
our observation, a benign program only performs hypercalls
for cpuid [34]. To support cpuid, the monitor emulates it by
requesting to the hypervisor once and caching the results. For
normal interrupts (e.g., scheduler events), the monitor saves
the sandbox state and then masks it, before jumping to the
OS handlers (@). After the OS handles them, the control flow
is redirected back to the monitor (to resume the sandbox).
Recall that the LibOS requests the monitor for client data
communication. The monitor internally handles it in such
cases (@, further explained in §6.3). Finally, the monitor
disables sandboxes to send user-mode interrupts by clearing
IA32_UINTR_TT.valid (@) before entering them.
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6.3 Secure Data Communication

EREBOR-MONITOR establishes a secure channel with a re-
mote client to exchange data into EREBOR-SANDBOX s con-
fined memory and return results. The monitor does not have
direct network access; rather, it uses an untrusted proxy in
CVM (Fig. 7) to send and retrieve network packets.
Client-monitor secure channel establishment. Prior to
any client data communication, the monitor establishes a
secure channel with the client using remote attestation (§2.1).
In an EREBOR-enabled CVM, only the monitor is allowed
to establish attested secure channels—only it can execute a
tdcall (Tab. 2) to request a signed attestation digest from the
TDX hardware, which it then sends to the client. The client
verifies the signature, attests to the boot state measurement
in the digest, and uses the information provided to establish
a secure channel based on authenticated key exchange.

As we discussed in the verified two-stage boot (§5.1), only
the monitor and firmware are loaded into a CVM first. As
a result, a remote user can always attest that the correct
security monitor is loaded into the CVM and that they are
communicating with it, before establishing a secure channel.
Secure sandbox data communication and cleanup. Data
received through the secure channel is directly written into
EREBOR-SANDBOX by the monitor, and the results are se-
curely sent back through the monitor for transmission.

To support the data communication services for the sand-
box (§6.2), the monitor exposes an ioctl system interface with
a reserved file descriptor to the LibOS. Such ioctl calls are
intercepted by the monitor (@, Fig. 7), which checks the
descriptor and securely (a) writes client data into sandbox
memory or (b) reads results from sandbox. While output
data is encrypted, its size may still covertly leak informa-
tion. Thus, the monitor pads the output data to fixed-lengths
before returning it to the client [60]. After all results are
sent back and a client session is terminated, the monitor
clears (zeroes) the sandbox’s memory regions, including its
in-memory file system and internal thread contexts.

7 Implementation

EREBOR-MONITOR and guest OS kernel. Our monitor
is implemented on Linux v6.6.0, which is also used as the
CVM guest operating system. Our instrumentation modifies
the kernel with ~4.5k SLoC of C code and ~0.3k SLoC of
assembly code. The current implementation disables huge
pages (i.e., 2MB and 1GB), and the monitor’s memory re-
gion is also aligned with 4KB pages. Disabling huge page
is done to simplify PKS-based permission settings (§5.2) on
kernel’s direct mapping of all physical memory (and kernel
text mapping). This avoids the hurdle of setting fine-grained
permissions when kernel memory mappings are at coarse
granularities, particularly when EREBOR has to modify per-
missions for a subsection inside a huge page. In the future,
forced page splitting can be implemented when setting pro-
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tection keys within a huge page—by splitting the huge page
into 4KB pages and setting the protection keys only for the
required split pages. EREBOR requires W@®X permissions on
kernel’s code sections. To simplify implementation, we cur-
rently disable the loadable kernel module (LKM) and eBPF.
However, certain kernel operations—such as self-updating
its code using text_poke—require modifications to these
sections. To support this, we instrument the corresponding
poke functions (e.g., text_poke_f). Thus, the monitor can
validate and update the OS code on behalf of the kernel.
EREBOR-SANDBOX Library OS (LibOS) toolchain. Our
LibOS is an extension of Gramine [87]. We made ~2.9k SLoC
modifications (§6.2). For the memory backend, we reserved a
physical region based on Linux Contiguous Memory Alloca-
tor to serve sandbox confined memory. We created a driver
under /dev/ in the untrusted OS to help issue EMC and de-
clare memory. We modified the LibOS loader, replacing its
mmap backend with the driver, in which it (a) allocates con-
fined memory, (b) performs a EMC to declare the memory,
and (c) populates and pins the sandbox page table.

Derived from Gramine, EREBOR’s LibOS supports many
applications with minor modifications. Specifically, Gramine
supports POSIX APIs and over 170 Linux system calls, cov-
ering most commonly-used functionality, allowing it to na-
tively run complex Linux applications. The small modifica-
tions to such applications required by EREBOR are mainly
so that they can operate within a confined environment—
particularly concerning the secure data communication chan-
nel (§6.3). These modifications can be achieved with only
tens of lines of code using the ioctl interface (§6.3).

To illustrate EREBOR required program modifications con-
cretely, we rely on a real-world application used by our
evaluation—LLAMA .cpp (presented in details in §9). Such a
service application receives client input prompt (data), per-
forms large language model (LLM) inference subsequently,
and returns inference results. Listing 1 illustrates the main
modification to support EREBOR-SANDBOX.

Last, admittedly, LibOS compatibility still has challenges
due to EREBOR’s single-address space model (§4.2). Nonethe-
less, we have seen advancements in the recent solution [81],
which securely supports single address space for multi-tasks
by replacing fork with corresponding spawn-like supports.
Host hypervisor (Linux KVM). We simply employed an
Intel-maintained KVM hypervisor, which supports PKS virtu-
alization and will be upstreamed to the mainline Linux [21].
Limitations: Linux’s HW-CFI by CET (§2.2) currently sup-
ports only forward integrity (IBT), with kernel shadow stack
still under development [8]. Thus, our prototype omits back-
ward checks. However, these checks have minimal perfor-
mance impact [80, 92], and are by default deployed in the
latest kernel like Windows 11 [37]. Our monitor interposes
all exits from userspace, slightly increasing non-sandbox ex-
ecution overhead. This can be avoided by isolating IDTs and
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Listing 1. EREBOR-SANDBOX software modification.

1 | /% Application: LLAMA.cpp */
> | @@ Support Erebor's I/0 @@

3|+

struct io_payload {
+ char *buf;
5 |+ size_t size;
1}
+ int dev_fd = open("/dev/erebor-psudeo-io-dev", O_RDWR);
9 | @ common.cpp ++ support Erebor's input channel @@
bool gpt_params_find_arg(int argc, char *x argv, ...) {...
std: :copy(std: :istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
back_inserter(params.prompt));
struct io_payload input_p = {
.buf = new char[MAX_SZ]; .size = 0; };
ioctl(dev_fd, INPUT, &input_p);
params.prompt = std::string(input_p.buf, input_p.size);

[ S S|

@@ main.cpp ++ support Erebor's output channel @@

21 | int main(int argc, char *xargv) {...

std::ostringstream output_ss;

std::string output_buf;

struct io_payload output_p;

while ((n_remain != @ && !is_antiprompt)) {
for (auto id : embd) {

2 std::string token_str = llama_token_to_piece(id..);

printf("%s", token_str.c_str());

output_ss << token_str;

output_buf.append(token_str);

e
+

}

write_logfile(output_ss.str(), ...);

output_p.buf = const_cast<char *>(output_buf.c_str());
output_p.size = output_buf.size();

ioctl(dev_fd, OUTPUT, &output_p); ...

[ S |

syscall entries for normal programs and sandboxes [59, 95].

To facilitate implementation and evaluation, we rely on an
untrusted filesystem—DebugFS—to emulate EREBOR’s data
communication channel. That is, currently, instead of using
the network relay, we program EREBOR-SANDBOX to interact
data through a DebugFS interface.

8 Security Claims and Analysis

Through a series of security claims, this section shows how
we protect EREBOR-MONITOR’s integrity and enforce sand-
box isolation against attackers.
Enforcing MONITOR virtual privileged mode execution.
The attacker’s goal is to elevate privilege, by arbitrarily ex-
ecuting sensitive instructions (Tab. 2) while bypassing the
monitor-enforced restrictions (i.e., proper target values and
enforcement) on such instructions.
C1: EREBOR-MONITOR will execute within the CVM first and
only load a deprivileged kernel without sensitive instructions.
The client uses remote attestation mechanisms to ensure
the monitor is loaded. Before booting the kernel, the monitor
scans and analyzes the kernel image and refuses to boot if
sensitive instruction sequences are found (§5.1).
C2: The deprivileged kernel cannot insert sensitive instructions
in accessible memory regions and execute them.
The monitor controls the MMU interface and PKS to en-
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force the kernel’s WeX permissions to kernel pages. Any
dynamic code (e.g., kernel modules) is validated by the mon-
itor before loading. Moreover, SMEP is enabled to prevent
the kernel from executing sensitive instructions from user
pages (§5.2). Finally, the monitor controls GHCI to prevent
malicious device DMA from accessing kernel memory.

C3: The deprivileged kernel cannot harm the integrity of
EREBOR-MONITOR to break sensitive instruction restrictions.

With controlled MMU translation interfaces, the monitor
assigns PKS protection keys to its own pages, prohibiting the
kernel from remapping or accessing the monitor memory.
The monitor also controls GHCI to ensure the monitor mem-
ory is private and devices cannot perform malicious DMA
access to the monitor memory (§5.2).

C4: The deprivileged kernel cannot bypass the restrictions of
EREBOR-MoNITOR-enforced sensitive instructions, by arbitrar-
ily executing those instructions in the monitor memory.

All sensitive instruction requests will deterministically go
through the EMC with secure gates, in which the isolation
policies are always enforced (§5.3). The monitor deploys
HW-CFI to prevent any control flow violations without going
through EMC gates, Fig. 5c-left). Moreover, the interrupt gate
prevents any permission violations during EMC execution,
revoking privileged permissions at interrupts (Fig. 5c-right).
Claim: In the EREBOR-protected CVM, the kernel relies on
EREBOR-MONTTOR for all sensitive instructions (C1 — C4).

Enforcing SANDBOXx memory and data protection. The
attacker’s goal is to (a) leak client data by exploiting the
network and the communication channels, (b) retrieve data
in sandbox memory, or (c) leak data from the sandbox.

C5: Client data and processing results will only be exchanged
within an end-to-end secure channel to EREBOR-MONITOR.

The monitor controls the GHCI (Tab. 2) to generate at-
testation digests exclusively—no untrusted software can im-
personate the monitor to establish secure channels (§6.3).
Additionally, as data is encrypted by the channel, untrusted
software, including the proxy program, cannot access it.
C6: Attacker-controlled software outside EREBOR-SANDBOX
cannot read data located within sandbox memory.

Once client data is received, only the monitor will decrypt
and install it into confined memory (§6.3). By controlling
MMU mappings, the monitor ensures that confined memory
is exclusively accessed by the sandbox. Moreover, SMAP is
always enforced by the monitor during kernel execution,
ensuring the kernel cannot access sandbox user pages (§6.1).
C7: EREBOR-SANDBOX is not allowed to write to outside
attacker-accessible memory regions.

By controlling the MMU mappings, the monitor ensures
that a sandbox is granted write permission only to its con-
fined memory. Any other memory, whether owned by other
software or sandbox common memory, is either unmapped
or non-writable for the sandbox (§6.1).

C8: All software-driven exits from EREBOR-SANDBOX to outside
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Table 3. Overhead (CPU cycles) comparison between differ-
ent privilege-level transitions, including empty EMC, empty
syscall, and hypercall (tdcall in a native CVM and vmcall in
normal KVM guest). All costs are from round-trip calls.

Priv. trans. call #Cycle Times
EMC 1224 1x
TDCALL 5276 4.31X

Priv. trans. call #Cycle Times
SYSCALL 684  0.56X
VMCALL 4031  3.29%x

software are intercepted and protected by EREBOR-MONITOR.
Upon receiving client data, the monitor prohibits any
sandbox software-controlled exits, except for the monitor-
handled communication channel to support I/O (§6.3). Such
exits include system calls, synchronous VM exits, sending
userspace interrupts, and software exceptions (e.g., excep-
tions caused by illegal instructions or divide-by-zero). This
is enforced by controlling the system call entry (IA32_LSTAR
MSR), GHCI (tdcall instruction), userspace interrupt inter-
face (UINTR MSR), and context switch (IDT) interfaces from
the monitor. On the other hand, at external interrupts (e.g.,
invoked by external devices), the monitor always saves and
clears the sandbox registers’ state before exiting to the OS.
Claim: Client data is securely sent to and received from a
EreBOR-protected CVM, within a sandbox boundary (C5 — C8).

9 Evaluation

System specifications. We used an Intel® Xeon® Platinum
8570 production server running Ubuntu 24.04 (Linux v6.8.0),
with 56 physical (2.1 GHz) CPU cores, 1 TB memory, and 1
TB storage. We assigned 8 vCPU cores, 24 GB memory, and
100 GB virtualized (virtio) storage disk to the CVM. For the
client-server experiments, the remaining resources of the
host server machine were used to generate client workloads.
Evaluation settings. We first compared EREBOR against
Native (normal CVM). Then, for an ablation study, we
evaluated real-world application performance by compar-
ing EREBOR against running applications in a normal
CVM with LibOS (EREBOR-LibOS-only). We also adopted
two settings—EREBOR-LibOS-MMU and EREBOR-LibOS-
Exit—to break down overheads of sandbox memory isolation
(§6.1) and sandbox exit protection (§6.2), respectively.

9.1 Micro-Benchmarks

This section evaluates EREBOR’s overhead on delegated priv-
ileged instructions and general system events.

Privileged operation cost breakdown. EREBOR delegates
privileged instructions (Tab. 2) to EREBOR-MONITOR using
an EMC (§6.1), our privilege transition call gates. It is im-
portant to understand the overhead of privilege transitions.
We first evaluated the cost of an empty EMC and compared
it with other privilege transitions, including system calls
and hypercalls. Then, we evaluated the cost of individual
privileged instructions when enabling EREBOR’s EMC, and
compared it against native CVM execution.
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Table 4. OS privileged instruction overheads (CPU cycles).
Target MSR: IA32_LSTAR. Target CR: CRO. Target GHCI:
tdcall. tdreport to generate attestation report. MMU: page
table entry (PTE) update overhead. Native MMU update is
measured by kernel’s default native_set_pte for PTE write.

Privileged| #Cycle (Times) |Privileged #Cycle (Times)
Operation| Native ~EREBOR |Operation| Native EREBOR
MMU | 23 (1x) 1345 (58.48x)| IDT 260 (1x) 1369 (5.27x)
CR 294 (1x) 1593 (5.42x) | MSR 364 (1X) 1613 (4.43X)
SMAP |62 (1x) 1291 (20.82X)| GHCI |126806 (1x) 128081 (1.01x)
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Figure 8. EREBOR’s overhead on LMBench (which ran as
non-sandboxed normal workloads. From left to right, their
EMC/second: 1.4M, 0.9M, 3.6M, 1.7M, 1.4M, 1.9M, 2.0M.

Tab. 3 shows the costs of different privilege transition
calls, each executing an empty function. We found that EMC
is twice as expensive as a system call, due to extra MSR
operations during its entry and exit gates (Fig. 5). On the
other hand, a hypercall in a TD guest (tdcall) incurs 3.3%
more overhead compared to EMC, while in a normal (non-
TD) guest, the hypercall (vmcall) incurs 2.3X more overhead.
The increased hypercall latency in CVMs is because the TDX
module has to protect the saved guest context state.

Tab. 4 illustrates the cost of privileged instructions. The
primary overhead to all these operations is the EMC, but
since the operations themselves take different times, their
overall cost is different. Specifically, in terms of PTE updates
(MMU), the native kernel performs few memory-write oper-
ations (only tens of cycles); thus adding an EMC increases the
overhead significantly (58.5%). Nevertheless, PTE updates
are generally infrequent (e.g., during dynamic allocation and
process page table initialization). The impact of the extra
cost along with the overhead (4.43 — 5.42X) from similarly in-
frequent updates to CRs, IDT, and MSRs is amortized during
program execution (as shown in §9.2). In contrast, EREBOR’s
overhead on tdcall is small. For instance, the majority of cy-
cles in a TDREPORT are from report generation and integrity
protection (i.e., HMAC key attachment) operations.
General system benchmarks (LMBench). We evaluated
EREBOR’s performance overhead on system events using
LMBench [72]. Note that LMBench runs non-sandboxed. The
aim is to understand EREBOR’s overhead on system events,
as EREBOR’s memory confinement and privilege instruction
interposition are applied to the whole system.
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Table 5. Real-world scenario and workload description.

Scenario (Prog.) Workload Description

llama.cpp [23] with a common llama2-7b ~5GB model [25].
Default 8 threads and (confined) 256MB memory K-V cache.
Prompted tasks of text translation and code generation.
NCNN, OpenCV, OpenMP framework with common model

LLM inference
(llama.cpp)

Image processing

(yolo) of Yolov5 [38]. Image segmentation with 100 input images.
Information An ~400MB in-memory common database [31] populated by
retrieval (drugbank) | Drugbank [91]. Information retrieval by using 2.2M queries.

Graph processing
(graphchi)

GraphChi [65] with 8 threads, and 2GB confined memory.
Pagerank with an input graph Twitch-gamers (6.8M edges).

Intrusion detection | Unicorn [58] analyzer with 8 threads, 2GB confined memory

(unicorn) cache and input of parsed 20MB log file.
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Figure 9. EREBOR’s overhead on real-world workloads.

Fig. 8 shows the results. Among all benchmarks, page-
fault has the highest overhead (3.8x Native). During this
benchmark, 3.5 million EMC were triggered per second. Also,
it recorded ~6.4 million context switches, including 5.8 mil-
lion system calls and 530 thousand exceptions or interrup-
tions. On average, each context switch triggered 3.3 EMCs.

Similar to the pagefault benchmark, creating processes
(i.e., the fork benchmark) also introduces high costs. This
is because such operations involve extensive MMU updates
(e.g., installing page table entries to handle page faults or
copy process address space). From the statistics, the fork
benchmarks include ~2 million EMC per second, which in-
curs high costs. Such overhead could be lowered if batched
MMU update is enabled [51]. Nevertheless, the impact of fork
is one-time during process initialization, and EREBOR’s LibOS
does not directly use forks (§6.2), while the other overheads
are amortized during execution (illustrated in §9.2).

9.2 Target Programs

This section describes EREBOR’s performance in real-world
service scenarios. Tab. 5 shows programs and workloads.

Results. Fig. 9 illustrates the runtime performance overhead
incurred by these programs, while Tab. 6 provides detailed
statistics related to exits incurred during execution, and
memory and initialization overhead. The geometric mean
overhead of EREBOR over all programs is 8.1%. Considering
breaking down the overhead into memory view isolation and
container exit protection, the overheads amount to 3.6% and
3.9%, respectively, whereas the LibOS-only incurs a geomean
overhead of 1.7%. Adopting the LibOS incurs a negligible
overhead, as it emulates runtime system calls in userspace,
avoiding considerable context switches to the kernel. Its
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Table 6. Program execution statistics. #PF: page fault rate
(per second). #Timer: APIC timer interrupt rate. #VE: vir-
tualization exception rate. EMC/s: EREBOR-MONITOR-call
rate. Time: data processing workload execution time with
ERreBoR. Conf. and Com.: the amount of sandbox confined
and common memory, respectively. Init. Overhead: pro-
gram memory initialization overhead over Native execution.

Program Sandbox-Exit (#exit/s) EMC/s Time. Mem (MB) Init.
#PF #Timer #VE Total (sec) Conf. Com. Overhead

llama.Cpp 1.8k 0.9k 1.7k 44k 469k 52.85 501 4096 52.70%

yolo 1.2k 1.0k 13k 3.5k 77.6k 19.60 757 132 13.30%

drugbank 0.5k 0.5k 1.2k 2.2k 87.6k 12.89 814 400 28.50%

graphchi 0.8k 2.7k 0.7k 4.2k 409k 3431 1340 - 36.80%

unicorn [0.7k 23k 09k 3.9k 395k 3894 1254 - 31.20%
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Figure 10. Relative throughput of background programs.

userspace synchronization incurs small overheads.

Among the programs, llama.cpp introduces the highest
overhead at 13.15%, as it has a heavier workload. Its large
memory usage induces more page faults for common mem-
ory. As a result, it has a considerable amount of runtime
sandbox exits (4.5k in total exits per second due to different
exceptions and interrupts) and EMCs (around 47k per sec-
ond). Furthermore, with the setting of LibOS-only, Llama.cpp
incurs an overhead of 4.5%, which is higher than that ob-
served in other programs. This is because we observed fre-
quent task synchronizations during its execution. Thus, the
LibOS causes more overhead due to synchronization.

With common memory sharing, we observed a 0.15-9.2X
reduction in memory usage, cutting consumption by up to
89.1% for a single sandbox. For instance, without memory
sharing in llama.cpp, a 4GB model must be replicated across
8 containers, requiring ~36GB memory. This was reduced
to ~8GB in our experiments. Larger shared regions would
further enhance memory savings. EREBOR increased initial-
ization time by 11.5-52.7%, as pre-allocating container mem-
ory triggers many page faults. As shown in §9.1, page fault
handling time increases due to EMCs. Nevertheless, this is a
one-time cost, and containers can be pre-initialized in real
settings (i.e., by adopting warm-start techniques [60, 68, 96]).

9.3 System-Intensive Background Programs

EREBOR’Ss memory confinement (§6.1) and privileged instruc-
tion interposition (Tab. 2) are enforced system-wide, incur-
ring overhead for normal (non-sandboxed) programs. These
programs manage VMs and serve as proxies (§6.3). We eval-
uated this overhead using several I/O-intensive workloads:
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Table 7. Cross-CVM architectural features for EREBOR.

CVM general interfaces

Plat. Registers Ctxt.

Hardware protection features
Kernel-user Prot. HW-CFI
switch separation key  Fwd. Back.
TDX| CR/MSR  IDT  tdcall |[SMEP/SMAP  PKS IBT SST
SEV| CR/MSR IDT vmgexit|SMEP/SMAP page table IBT SST
CCA|EL1Regs VBAR smc [5]| PXN/PAN PIE [30] BTI [2] GCS [33]

GHCI

e OpenSSH server under default settings; sending 1k
file transfer requests from 8 client threads.

e Nginx server under default settings; using ab [1] to
generate 1k client file requests (32 concurrency).

* Clients and servers run on the same machine. All transferred
file sizes varied from 1KB to 16MB.

Fig. 10 shows the results. Across file I/O tasks, we found
that the average throughput reductions of OpenSSH and
Nginx are 8.2% and 5.1% (with maximum overheads 18%
and 17.6% on small-sized files), respectively. For larger files,
the performance is close to that of native with less than
5% throughput reduction. This is due to the increased fre-
quency of system events during small file transfers, which
leads to more frequent EREBOR interpositions and a higher
relative overhead. For larger files, the overhead is effectively
amortized over the extended data transmission.

9.4 Key Takeaways

While EREBOR increases system event latency by up to 3.8X,
this overhead is amortized during execution. At initialization,
programs incur a one-time overhead of 11.5% to 52.7% due to
page faults. At runtime, the sandbox adds a modest geomean
overhead of 8.1%, while saving up to 89.1% memory by secure
sharing. Thus, we find EREBOR practical for real-world use.

10 Platform Compatibility

Non-TDX architectural compatibility. The hardware
features leveraged by EREBOR to establish a security monitor
and enable sandboxing are generally available in AMD SEV
and ARM CCA (Tab. 7). The only exception we found was
that SEV currently lacks PKS (even though it supports the
user-mode protection keys or PKU). However, as the Nested
Kernel [51] shows, similar memory protection to PKS can be
enforced using private page table mappings and x86 write-
protection features at a slightly higher cost.
Paravisor-enhanced CVM deployment. Although there
is no current open-sourced hypervisor to support paravisor-
enhanced TDX implementation [4], we find that paravisors
are designed to shift native (non-CVM) guests into CVMs.
Therefore, we deployed EREBOR in a native guest to test
compatibility, and were successful in executing our system in
such a guest. This is expected since all the hardware features
required by EREBOR are not CVM-specific (unlike VMPL).
Note that we expect one change in EREBOR’s implemen-
tation on real paravisor deployments, specifically related to
attestation and secure channel establishment (§6.3). In such a
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case, the attestation report via tdreport would reflect the par-
avisor’s measurement instead of EREBOR-MONITOR. Thus, to
establish a secure channel with a remote user, EREBOR would
need to retrieve the attestation report either using a virtual
TPM (vTPM) deployed by the paravisor or the TDX run-
time measurement registers (RTMRs) [63]. We leave a full
paravisor deployment study to future work.

11 Discussion

Xen paravirtualization (PV). EREBOR’s intra-kernel secu-
rity monitor concepts (§5) are analogous to Xen’s paravir-
tualization interfaces [29]. Particularly, in Xen PV model,
all privileged guest instructions are replaced with paravir-
tualized equivalents—namely, hypercalls. However, EREBOR
differs for its sandboxing model (§3.2), which limits the set
of instructions managed within the monitor’s TCB, rather
than replicating the full suite of kernel functionalities (e.g.,
device and network management). Nonetheless, EREBOR’s
monitor interfaces can be directly derived from PV. We defer
the integration of PV interfaces with EREBOR to future work.
Unikernel-based approach comparison. An alternative
sandboxing approach is to deploy a trusted Unikernel as the
OS for a CVM—converting a CVM into a dedicated service
instance for a single client. EREBOR has benefits in the fol-
lowing aspects. First, EREBOR has a smaller TCB (e.g., less
than 5k LoC versus 57k LoC in Gramine-TDX [63] kernel),
as EREBOR delegates most functions to the kernel and just
validates them, instead of maintaining OS functions. Sec-
ond, EREBOR is cost-efficient in terms of handling concurrent
clients with common memory sharing. Under a Unikernel
design, each client has to be assigned its own CVM (with
fully replicated program common memory), and a single host
server may only support limited concurrent CVMs (e.g., 64
on our Xeon 5 server machine specified in §9). One poten-
tial avenue is to extend EREBOR to support intra-Unikernel
isolation [75, 83]. We leave this as future work.

Digital side/covert channel mitigations. EREBOR cur-
rently does not consider digital processing timing/intervals
and micro-architectural covert channels.

To mitigate process timing and input-output interval-
based covert channels, EREBOR can adopt fixed output inter-
vals based on one-shot request execution, or employ leakage-
free quantized communication intervals [60].

Even though CVM has robust side-channel protections
against the untrusted hypervisor [17], the CVM kernel shares
hardware resources like caches [55-57] and branch predic-
tor units [52, 67] with sandboxes. Thus, untrusted compo-
nents may leverage micro-architectural side-channels (e.g.,
cache/page table access pattern) to infer data. Admittedly,
an efficient and provable defense against these channels re-
quires hardware modifications [48, 82]. However, software
heuristic-based protections can be adopted by EREBOR, in-
cluding core-isolation, rate limiting for sandbox exits, and
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cache/TLB eviction-enforced exiting [74], as well as sandbox
software noise injection/obfuscation [40, 42, 77, 90].

12 Related Work

Intra-privilege kernel separation. Prior systems have
leveraged isolation within kernel to implement security mon-
itors. Our security monitor design is inspired by such ap-
proaches, particularly by Nooks [84], SVA [50], Nested Ker-
nel [51], and SKEE [45] which also virtualize the MMU inter-
face using instrumentation. Nevertheless, prior monitors are
designed for kernel hardening (e.g., kernel code integrity)
but not data protection. Implementing the latter requires
additional memory enforcement (§6.1) and exit interposi-
tion (§6.2). Moreover, our monitor uses efficient hardware-
enforced CFI mechanisms, while prior techniques rely on
private mappings or expensive compiler techniques (e.g.,
SAFECode). Besides MMU virtualization, IskiOS [54] and
KDPM [64] maintain shadow stacks or protect kernel sensi-
tive data by using MPK, respectively. DOPE [70] leverages
PKS to protect kernel objects from data-oriented attacks.

Client data sandbox for SGX enclaves. Ryoan [60] lever-
ages software fault isolation (SFI) (NaCl [94]) to support
distributed sandboxes, where different service providers can
securely process client data without leaking it. Chancel [41]
proposes multi-client SFI, allowing multiple isolated threads
in a single sandbox to efficiently share sandbox memory.
EREBOR requires a fundamentally different solution since
(a) it deals with CVMs instead of enclaves and (b) SGX en-
claves are not supported within TDX-based CVMs. Moreover,
EREBOR also avoids compiler-enforced SFI in userspace code,
which can incur high overheads during data processing [60].

13 Conclusion

EREBOR is a sandbox architecture design for CVMs that en-
forces full data protection against leakage to untrusted soft-
ware. It employs a novel security monitor for designed CVM,
using intra-privilege isolation and hardware features like
Control Enforcement Technology and Protection Keys, with
end-to-end sandbox exit interposition and protection. Our
evaluation shows that EREBOR is capable of executing diverse
cloud workloads with 4.5%-13.2% runtime overhead.
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A Artifact Appendix
A.1 Abstract

EREBOR’s source code is publically available, and its environ-
ment can be reproduced. In this appendix, we show the steps
to set up EREBOR and test its functionalities.

A.2 Description & Requirements

EREBOR requires an Intel physical machine with some
modern hardware features (§A.2.2).

A.2.1 How to access. We maintain an open GitHub repos-
itory to enable permanent accessibility. Meanwhile, we main-
tain a Zenodo repository for the archive.
o GitHub repository:
https://github.com/ASTERISC-Release/Erebor.
e Zenodo DOI: 10.5281/zenodo.14943102, URL:
https://doi.org/10.5281/zenodo.14943102.

Note: Please always use the GitHub repository to reproduce the
environment. Zenodo is just for public archive.

A.2.2 Hardware dependencies. EREBOR’s host physical
machine requires the following hardware dependencies:

e Intel Trust Domain Extensions (TDX). This is optional
(not required for personal development).

e Intel Protection Key Supervisor (PKS).

e Intel Control-flow Enforcement Technology (CET).

A.2.3 Software dependencies. While EREBOR’s execu-
tion environment is in the VM, it has the following base
requirements for the host physical machine and the guest:

e Ubuntu 22.04/24.04 Linux/KVM (host)

e QEMU version above 7.1.0 (host)

e (Extended) Gramine LibOS (for guest VM)

A.2.4 Benchmarks. We provide two workloads to test
EREBOR’s main functionalities:

o LMbench system benchmark. This shows EREBOR’s ca-
pability to support general system events.

e Helloword demo sandbox program. This minimal work-
ing example shows EREBOR’s capability to support
sandboxed programs and protect data.

o LLAMA.cpp sandbox program. This working example
shows EREBOR’s capability to support a real-world
scenario—LLM inference.

A.3 Set-up

System settings. EREBOR has two settings:

o (Default) Normal VM setting: In this setting, the guest
will run inside a normal VM, with EREBOR’s security
monitor enabled. This setting is to test EREBOR’s main
functionalities, and using a normal VM is sufficient.

e TDX CVM setting: In this setting, the guest will run in
a CVM, aligned with the paper’s system/threat model.
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For artifact evaluation/personal development, we provide
access only to the (Default) setting. As mentioned in the
paper, the same code can run in both settings.
Environment setup. Please follow the README file in the
GitHub repository (§A.2.1) to set up the environment.
Login into the guest VM. Once setting up the environment,
please use the following commands to log in to the guest VM.
Both the username and password of the VM are pks:

1 | eurosys-aec-review@..:~/Erebor/scripts$ pwd
/mnt/sdb/Erebor/scripts # this is the scripts dir
$ sudo ./run-kvm-vm.sh

# Now the terminal will login into the VM session
pks@ubuntu-vm:~$

N oUW

8 | # Shutdown the VM by typing Ctrl - ]
9 | pks@ubuntu-vm:~$ *]

# Now returned to the host
12 | eurosys-aec-review@. .:~/Erebor/scripts$

Type ctrl and ] (*-]) to shutdown the VM and return
to the host terminal. Please shut down and restart the VM if
it’s finished or crashed (see §A.5).

A.4 Evaluation workflow

A.4.1 Major Claims

e (C1): EREBOR’s source code is publically available and
its environment can be correctly set up (§A.3).

o (C2): EREBOR is able to support its functionalities (exper-
iments E1 - E3 below).

A.4.2 Experiments. We leverage our benchmarks (§A.2.4)
for the following evaluations.

Login to the guest VM: Please always use the script/-
commands shown in §A.3.
Experiment (E1): LMBench [EST 5-10 mins].

[Preparation]. We already installed the benchmarks within
the server’s VM disk image, so youo do not need to set up
the benchmark again.

[Execution]. Please run in the guest VM. After finishing
the scripts, please kill the guest VM.

1 | pks@ubuntu-vm:~$ pwd
: /home/pks

cd microbench/1lmbench/
./mmap. sh
./pagefault.sh
./syscall.sh
./signal.sh

./proc.sh

3
4
5
6

8
9
10
11 | # Finish, shutdown the VM (type *-1)
12| pks@ubuntu-vm:~$ *]

$
$
$
$
$
$

[Results]. Results will be printed to the terminal.

Experiment (E2): Helloworld sandbox [EST 5-10 mins].
[Preparation]. The Helloworld demo sandbox program is
downloaded alongside the LibOS. Please build/install it:


https://github.com/ASTERISC-Release/Erebor
https://doi.org/10.5281/zenodo.14943102

EREBOR

pks@ubuntu-vm:~$ pwd
/home/pks

$ cd ENCOS-LIBOS/gramine/CI-Examples/helloworld
$ make clean && make

S I TR R

# Finish, shutdown the VM (type *-1)
8 | pks@ubuntu-vm:~$ *]

For this demo sandbox program, it does not require any in-
put, and it will provide the output data 0x4141. .41 (FAA..A”).
You can find a detailed description in the file: ENCOS-
LIBOS/gramine/ClI-examples/helloworld/ README.md.

[Execution]. Execute the program:

/home/pks/ENCOS-LIBOS/gramine/CI-Examples/helloworld

W N e

$ gramine-encos helloworld

[Results] EREBOR’s monitor will forward the output data.
We use an untrusted debugfs file channel to see the plaintext
output data:

$ sudo cat /sys/kernel/debug/encos-I0-emulate/out
AAAAAAAA

# Finish, shutdown the VM (type *-1)
pks@ubuntu-vm:~$ *]

ST R

Experiment (E3): LLAMA.cpp sandbox [EST 10-15 mins].
[Preparation]. The LLAMA.cpp program is also down-
loaded alongside the LibOS. Please build/install it:

pks@ubuntu-vm:~$ pwd
/home/pks

$ cd ENCOS-LIBOS/gramine/CI-Examples/1llama
$ ./pre-req.sh
6 | $ make

(SRR RN

[Execution].
First, we run a native llama.cpp (non-sandboxed environ-
ment). Please just execute:
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pks@ubuntu-vm:...$ pwd
/home/pks/ENCOS-LIBOS/gramine/CI-Examples/1lama

N

pks@ubuntu-vm:...$ ./run-tests-native.sh

This script will simply load the local file demo_prompt.txt
as the prompt and execute llama.cpp. During the program
execution, you will see the inference results (generated text)
on the terminal output (i.e., STDOUT).

Then, we run and see how EREBOR sandbox would work.
Please read and execute this script:

1 ‘ pks@ubuntu-vm:...$ ./run-tests-erebor-demo.sh ‘

As demo_prompt.txt reflects secret data, it cannot be
directly read into the program. Thus, the script puts the
prompt into the simulated input communication channel (at
/sys/kernel/debug/encos-I0-emulate/in).

[Results] As the program llama.cpp is now executed in
EREBOR ’s confined sandbox environment, output data is
not printed onto the terminal, but put into the emulated
communication output channel. Fetch the output by:

1 | pks@ubuntu-vm:...$ sudo cat
/sys/kernel/debug/encos-10-emulate/out

(This emulates the monitor returns result data to the client
by a network proxy).

A.5 General Notes

1. As a research prototype, EREBOR may contain implemen-
tation issues. During testing/development, in rare cases, you
may encounter VM panic (kernel hangs/panic). Though this
is rare, in such cases, please simply destroy the VM:

- By typing ctrl and ], i.e., *-].

- And restart the VM again (§A.3).

2. We are actively updating EREBOR. Please refer to our
GitHub repository.
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