Fine-Grained Kernel Auditing using Augmented Syscall Reference
Behavior Analysis and Virtualized Selective Tracing

Chuqi Zhang® Spencer Faith! Feras Al-Qassas’ Theodorus Februanto! Zhenkai Liang® Adil Ahmad'
§National University of Singapore
tArizona State University
{chugqiz, liangzk} @comp.nus.edu.sg, {smfaith,fialgass,tfebruan,adil.ahmad}@asu.edu

Abstract—Audit logs are widely used for attack investigation
in enterprises, but their granularity (system calls and related
events) is too coarse-grained to be useful for attack forensics
when adversaries launch advanced kernel exploits. Such
exploits manipulate kernel memory to hijack kernel control-
flow, and these aspects (i.e., the executed anomaly control flows
and their capabilities) are not visible in today’s audit logs.

APPARE is an auditing framework designed to comprehen-
sively and efficiently capture sophisticated in-memory kernel
exploit behaviors. APPARE implements anomalous control-flow
logging, where it leverages an augmented hybrid approach
to (a) dynamically profile representative system call workloads,
and (b) generalize the profiles by using LLM-assisted code
semantics reasoning to differentiate reference (benign) and
anomalous function executions within the kernel. APPARE uses
efficient hardware tracing techniques to record anomaly control
flow behaviors, as well as the historical contexts to reveal where
control flow divergences (hijacking) happen. APPARE leverages
virtualization extensions and features available in modern
architectures to achieve end-to-end tamper-proof logging,
persistence, and management. Our analysis and evaluation
show that APPARE effectively captures attack behaviors in
the exploits we analyzed, while incurring a geometric mean
slowdown of only 2.0% across diverse programs.

1. Introduction

The widespread adoption of memory-unsafe languages in
commodity operating systems (OSs) makes them vulnerable
to sophisticated in-memory exploits that hijack control-flow
during execution for compromise. Despite the evolution of ad-
vanced defenses such as memory layout randomization (e.g.,
KASLR, RANDSTACK) and kernel control-flow integrity
(e.g., KCFI) [1-5], attackers continue to devise methods
to bypass these protections. For instance, RetSpill [6] and
DirtyCred [7] can circumvent all defenses currently deployed
in Linux, including KCFI [8].

Given the persistent threat posed by control-flow exploits,
there is a critical need in mission-critical (e.g., enterprise)
infrastructure for systems that can help investigate compro-
mises resulting from control-flow hijacks. Such investiga-
tions aim to either hunt for compromises through intrusion
detection or conduct comprehensive post-mortem forensic

analysis. Traditionally, helping in attack investigations is the
role of the audit system, a kernel component that records
sensitive interactions by user programs (e.g., process and file
creation) in the form of audit logs. The seminal BackTracker
system [9] showed that these logs can trace attack origin
and vectors if the system is compromised.

Unfortunately, current audit logs are too coarse-grained
for the investigation of sophisticated kernel exploits (§2).
Specifically, modern audit systems only record information
at the granularity of system call entry-points [10, 11] and
user-space context between system calls [12—15], completely
missing malicious behaviors that occur entirely in-memory
and inside system call executions. For instance, consider
the control-flow hijacking exploit of CVE-2021-22555 [16].
Current audit systems would log routine I/O-related system
calls (e.g., write, close), but overlook the critical anoma-
lous control-flow executed within the syscalls—execution
of a sequence of task credential manipulation functions that
elevates the attacker’s privilege to root [16].

Enhancing the granularity of audit logs to effectively
investigate these sophisticated exploits requires tracking
fine-grained control-flow during system calls, but this is
not straightforward. The kernel has tens of thousands of
functions. Indiscriminately tracing all functions produces
significant runtime overhead and an overwhelming volume
of logs, an aspect that also complicates the identification and
investigation of malicious activities within logs [17].

Our work—APPARE—solves the aforementioned prob-
lems by only logging anomalous and unlikely control-flow
events during system calls (§4). The former refers to execu-
tions that are unreachable during a system call as inferred
through control-flow graphs generated by static analysis
techniques. The latter refers to executions that are reachable
but may never happen due to imprecision in static analysis or
may happen very infrequently in less-explored and niche code-
paths. Combining both allows APPARE to define a reference
behavior of each system call that is general enough to avoid
logging common (benign) control-flow executions, while
also being able to capture diverse exploit conditions. Our
evaluation shows that this reference behavior only contains
0.01% — 7.11% of all kernel functions (75.1% smaller on
average than naive approaches), allowing the system to log
all kernel functions in evaluated exploits, while incurring a
performance overhead of only 0.2% — 6.8%.

We address two main technical challenges in APPARE’s
design. First, it is challenging to decipher the unlikely control-
flow required to define reference syscall behavior. Prior
research [18-20] leverages workload profiling alone, but this
leads to severe under-approximation of runtime behavior,
increasing the performance and storage overheads, and scala-
bility problems due to strict workload-dependence. Second, it
is challenging to selectively trace anomalous control flow in
a secure and efficient manner using current approaches like
ftrace or Processor Tracing (PT) [14]. Neither approach
allows a fine-grained (function-level) toggle required for the
distinct reference behavior of each system call. Even worse,
generated traces are vulnerable to OS tampering during
exploits, harming log integrity and availability.

To effectively identify system call reference behaviors,
APPARE augments representative workload profiling with
static kernel knowledge base extraction and retrieval aug-
mented generation (RAG)-based code semantics reasoning
(§5.1). APPARE pre-profiles a small set of representative
workloads (e.g., OS developer-maintained test suites) to
derive seed behaviors for syscalls. Simultaneously, APPARE
extracts static kernel control-flow (call graph) and function
semantics knowledge. APPARE generates generic syscall
reference behaviors by expanding from the profiled seed
functions with augmented hybrid analysis. Starting from
seed functions, APPARE traverses the kernel call graph and
employs a large language model (LLM), which retrieves
historical execution contexts as well as the corresponding
semantics information, and reasons about uncovered but
plausible newly explored control-flow transitions.

To securely and selectively trace anomalous control-
flow, APPARE leverages virtualization extensions to maintain
restricted code pages, transparent memory-view switching,
and guarded stacks (§5.2). For each syscall, APPARE creates
pages where all non-reference kernel functions are replaced
with illegal instructions. Executing them (i.e., anomalous
control-flow) raises a trap caught by APPARE, at which time
APPARE enables tracing while transparently switching to
unrestricted (normal) code pages. APPARE uses a guarded
stack that does not contain the return address while tracing
anomalous control-flow. When the stack is exhausted (i.e.,
control-flow returns to reference functions), another trap is
raised for APPARE to disable tracing. The aforementioned
mechanisms are combined with hardware-protected tracing
buffers and configurations, as well as an asynchronous per-
sistence mechanism to ensure control-flow traces are always
available for investigation even after kernel compromise.

We implemented an APPARE prototype for Intel x86
systems that run the Linux OS kernel (§6). Our prototype
consists of (1) a profiler toolchain that automatically derives
syscall reference behaviors, (2) a logger (as a virtualization-
based monitor) to perform end-to-end online secure logging
and persistence, and (3) a parser that leverages a static binary
loader and trace decoder to parse hardware trace packets
into specific kernel functions and chronologically link syscall
with control-flow logs. To foster future research, we open-
source our implementation prototype. Our source code is at:
https://github.com/ASTERISC-Release/Appare.

TABLE 1: Comparison between APPARE (this work) and
existing audit systems (deployed or proposed by research).

Proposed Conventional ~ Dependency Tamper- Tamper- APPARE
Systems OS-deployed enhanced evident proof (this work)
[11, 21] [12-15] [22-24] [25-27]
Information sources reported within logs
System call Yes Yes Yes Yes Yes
Control-flow No Between-syscalls No No In-syscalls
(userspace) (kernspace)
Tamper protection against untrusted kernel
Integrity No No Syscall Syscall All Sources
Availability No No No Syscall All Sources

Using our prototype, we evaluated APPARE on several
dimensions using exploits, benchmarks, and real-world pro-
grams (§7-§8). In terms of security, APPARE demonstrates
a tight reference behavior bound (as discussed previously)
that allows it to log kernel functions exploited in 10 out of
11 real-world CVEs, including RetSpill [6] that can exploit
Linux with KCFI enabled. To gauge performance and storage
requirements, we evaluated diverse real-world programs
Nginx, Redis, Memcached, 7zip, and OpenSSL. APPARE’s
small performance overhead (0.2% — 6.8%) is 13% — 77%
lower than approaches that define reference behavior using
dynamic workload profiling alone, while its storage overhead
is (on average) 51% lower, demonstrating its practicality.

2. Motivation

This section describes what information is required for
attack investigation (i.e., runtime threat hunting or post-
mortem forensic analysis to uncover the root-cause of
exploits) under control-flow hijacks and why existing systems
cannot obtain the required information.

Consider a real-world exploit that involves control flow
hijacking through heap-based out-of-bounds (OOB) write and
use-after-free (UAF) (CVE-2021-22555 [16]). The adversary
exploits an incorrect type conversion in the ip_tables sub-
module of the Linux Netfilter. A heap OOB write is triggered
during a setsockopt system call. The attacker then crafts
a pipe_buffer object—which contains a function pointer
ops—and overwrites its pointer. When releasing the pipe
through close, the attacker hijacks the kernel control flow
to execute a chain of kernel functions that create escalated
credentials and remove namespace restrictions for the calling
process. For investigation of such an attack, the audit system
should capture both the system call and internal control-flow
context, like exploited kernel functions (Fig. 1).

Sadly, today’s audit systems (Tab. 1) are designed to
collect and securely maintain coarse-granular information
within logs. While useful for investigating typical attacks
(e.g., due to system misconfiguration), they make investiga-
tion ineffective against kernel control-flow hijacks.

In particular, conventional audit systems [11, 21] track
information at system call-granular user-kernel interactions
like network and file system. This is insufficient—for the
control flow exploit, the logs will only report a set of
commonly-occurring network and file-related system calls.
Others track control-flow for auditing, but only during

https://github.com/ASTERISC-Release/Appare

pipe buffer

AN

Syscall (audit) logs
g e e e
prepare_kernel creds H ’finditaskibyivpid

switch_task namespace

. ' !

e M e P
Figure 1: PoC exploit illustration of CVE-2021-22555 [16],
including information (syscall entries) logged and missed by
state-of-the-art audit systems.

user-space execution of programs to resolve dependencies
between system call events and improve forensic correla-
tion. RAIN [12] and RTAG [13] enable record-and-replay
among syscall events to resolve their dependencies. Similarly,
PalanTir [14] deploys hardware processor tracing (using Intel
PT [28]) to track program control flow, subsequently applying
static taint analysis to resolve dependencies among system
call logs. MARSARA [15] also leverages PT to validate the
partitioned dependencies within system call logs. However,
none of these systems aim to investigate control-flow during
system calls, which requires a new approach (§4).

The other major recent focus of audit systems has been
to ensure tamper-protection of logs against compromised sys-
tems (i.e., kernels). There are two main techniques employed:
(a) leveraging efficient cryptographic constructions [22-24]
to preserve the integrity of logs and (b) leveraging trustworthy
environments either on the same machine (e.g., using Arm
TrustZone [26]) or an external device [25] to preserve both
integrity and availability of logs. The goal of these systems
is only to preserve the coarse system call logs, which are
generated by the kernel auditing software stack.

3. System and Threat Model

This work targets deployment on enterprise machines,
where our attacker’s goal is to compromise the kernel.
Auditing scope. Like prior auditing research, we assume that
IT administrators will establish a set of high-risk programs
as the target auditing scope (e.g., through internal risk
assessment [29]). For example, a typical scope includes
network-facing applications, such as web servers [30], script
downloaders, and execution engines. Attackers will complete
prerequisite attack steps (e.g., initial foothold establishment)
and compromise one such userspace program. Through this
program, we assume that the attacker gains the ability to
execute any system call with any parameters at any time.
Attacker capabilities. The attacker is capable of launching
control-flow hijacks during system calls. The requirements
for such attacks are (a) unpatched kernel vulnerabilities
and (b) the ability to decipher kernel memory layout and
find gadgets (e.g., using KOOBE [31] and RetSpill [6]). By
satisfying such requirements, attackers can bypass the default
kernel security mitigations and redirect kernel execution
to chain arbitrary kernel functions for privilege escalation.
As soon as the attacker compromises the kernel, they will

Divergence

Remaining kernel functions

Reference
functions
for syscall

Figure 2: Illustration of our logging approach. F1-F4 are
reference (allowed) functions for a syscall. Any jump to
remaining functions is treated as a divergence and logged.

tamper with log generation mechanisms to hide traces of
their attack [23]. After compromise, the attacker will leverage
stealth techniques [32] (e.g., attack delegation) to evade
detection and investigation. Thus, logs recorded after kernel
compromise are not useful for investigation [25, 26].
Assumptions and out-of-scope. This work exclusively
focuses on control-flow hijacking attacks—data-only attacks
are out of scope. We also assume that the machine’s hardware
(e.g., CPU, motherboard, and DRAM) and firmware are
correct. Hence, we exclude kernel compromise through micro-
architectural defects [33] and fault injection (e.g., rowhammer
attacks [34]). In addition, we assume that the OS is vulnerable
but initially benign (i.e., written by honest developers).

4. Approach

Our goal is to design an audit system that captures fine-
grained information regarding control-flow hijacks in the
logs produced before a machine is compromised. To achieve
this, we propose the approach of tracing anomalous and
unlikely control-flow during a system call.

Anomalous control-flow refers to functions that should
never be executed during a specific syscall’s benign execution.
Such executions can be found by traversing control-flow
graphs (CFGs) produced by static analysis from the syscall
entry point, and detecting those that are unreachable.

Unlikely control-flow refers to execution of functions
that the CFG says are reachable, but are (1) potentially
a false positive due to the imprecision in static analysis
(e.g., over-approximated indirect jump resolution), and are
thus “truly-anomalous” in such cases, or (2) belong to niche
pathways that are seldom triggered under normal execution.

Fig. 2 illustrates the key concepts in our approach. We
identify a set of reference behavior, representing functions
whose execution is neither anomalous nor unlikely, i.e., those
likely to occur during a syscall (@). Any control-flow
transfer away from those functions is considered anoma-
lous (@). Upon such divergence, we log all anomalous
control-flow transfers until execution returns to the reference
behavior (€). The rest of this section describes the rationale
of our approach (§4.1) and its challenges (§4.2).

4.1. Rationale

The naive solution is to record all kernel control-flow
during a syscall. Unfortunately, this incurs a significant

slowdown and produces an overwhelming number of logs.
We empirically evaluated this using two common programs,
Nginx and Redis. Specifically, to trace control-flow during
system calls, we individually leveraged (a) hardware-assisted
tracing (using Intel Processor Tracing or PT [28]), which
records control-flow transfers as hardware-generated packets,
and (b) software tracing (using ftrace [35]), which uses
compiler instrumentation to trap and log executed kernel
functions. We deployed both to comprehensively understand
the overhead using software and hardware approaches. In
terms of workload, we used Redis-benchmark (100K requests
with 1:1 key-value SET: GET) for Redis and ApacheBench
(1K requests for a default file) for Nginx. We employed
concurrent client connections ranging from 1 to 64 (see §8
for detailed machine specifications).

’58 —eo—Native:SET =4+=SWtrace:GET |8 =—+—Native

g Native:GET ——HWtrace:SET SW-trace

2 —i—SWtrace:SET=>—HWtrace:GET e T W-trace

s

=4 4

[

)

<

S \

< - ¢ Y
0 : — 0+, : : :

200 400 600 0 20 40 60
Redis throughput (KQPS) Nginx throughput (KQPS)

Figure 3: Runtime overhead of the strawman solution (indis-
criminately tracing all kernel functions of each syscall).

Fig. 3 shows performance overhead incurred by the naive
solution. Compared to native, software tracing slows Redis
by 57.7% and Nginx by 85.9%. While hardware tracing is
considered efficient [14, 36], it still imposes non-negligible
overheads of 20.6% and 27.6%, respectively, given that it has
to persist the high volume of trace data without any data drops
(which is necessary for forensic analysis [37]). Moreover,
full control-flow tracing also produces an enormous volume
of logs—exceeding 133.6 MB/s (Nginx) and 78.1 MB/s
(Redis)—up to 11.5x more than produced by typical audit
systems (§9). This requires significant storage and processing
power to adequately parse through all produced logs and
detect potential control-flow hijacks.

Unrelated kernel funcs.
(must not execute)

(too under-approximated)

Reference kernel funcs. (Fy: static, F;: dynamic, I, hybrid)

Figure 4: Illustration of using different approaches to identify
a certain syscall’s reference kernel functions.

One way to address the aforementioned problems would
be to record only anomalous control-flow based on static
analysis. However, static analysis yields significant over-
approximation, causing precision problems (F, Fig. 4). Due

Listing 1: A unlikely (niche) path in syscall write.

1 struct page x__alloc_pages (gfp_t gpt...) {...
2 page = get_page_from_freelist(...);
if (likely (page))

goto out;
/% Unlikely path triggered =/
6 page = __alloc_pages_slowpath(...);
out:...

8 return page;
9 |y
10 | /* Dynamic call path (very infrequent) =/
11 write --> _ x64_sys_write() . —=> __alloc_pages()

12 -> __alloc_pages_slow_path() ...-> shrink_zones/()

to kernel complexity and the pervasive indirect jumps, identi-
fying a syscall’s reachable functions statically is difficult. For
instance, even using one of the state-of-the-art analyses [38],
we found over 45.8% and 68.6% functions can be reached
from read and write syscalls. Such over-approximation
would cause us to neglect logging considerable behaviors in
anomalous control-flow hijacking (false-negative logging).

To capture a broader range of truly anomalous behaviors,
it is also important to log unlikely control-flow transfers
during system call execution (§4). This would mitigate the
imprecision in the aforementioned static analysis.

Even when unlikely paths are benign, logging them
remains practical since they are niche and rarely executed,
adding minimal overhead with little risk of excessive logging.
List. 1 shows a concrete example of such an unlikely and
benign code path. Our empirical profiling reveals that the
write syscall invokes shrink_zones in fewer than 3.3%
of executions. This is expected, as shrink_zones is part
of a fallback activated in the page allocator’s slow path,
which is triggered only when the kernel is under high
memory pressure. Under normal conditions, such functions
are rarely executed; including them in the control-flow
logging scope would introduce minimal overhead (and false-
positive logging). Thus, we only include “likely” paths into
a syscall’s reference behavior (§4).

4.2. Challenges

Given the findings in the previous section, we find it
advantageous to log anomalous and unlikely control-flow
during syscalls. However, as we describe in the subsequent
paragraphs, this approach presents two non-trivial challenges.

Challenge-1: Identifying reference behavior for syscalls.
Prior research in domains like kernel specialization discovers
reference behavior for syscalls using dynamic workload
profiling only [18-20]. However, this has severe problems
(Fy4, Fig. 4) in terms of under-approximation and scalability.

Under dynamic profiling, reference behaviors are derived
by recording functions exercised by workload-specific inputs.
However, even within a single program, syscall behaviors
may vary due to complex kernel state. For instance, profiling
Nginx even under identical workloads (same as §4) shows
convergence only after ~15 runs (Fig. 5). Moreover, different
applications and workloads may behave differently under
the same system call. For example, read may be used

100
< /=
< 80
9]
o0 .
g 60 write setsockopt
§ 40 close epoll_wait
= | writev epoll_ctl
e 209 recvirom newfstatat

0 3 6 9 12 15
Times of profiles (#)

Figure 5: Dynamically profiled sysall behaviors using the
same workload of Nginx, accumulated by profile times.

for filesystem access, network I/O, or both, depending on
program behavior [19]. It is hard to profile all audit programs
for deployment. Thus, per-program under-approximation
triggers superfluous logging (false-positive).

Challenge-2: Tracing control-flow securely and selectively.
Once a suitable reference behavior is identified, any control-
flow divergence from this behavior must be traced. Effective
tracing must be selective and secure within syscall contexts,
but achieving this is non-trivial. First, selectivity is difficult
to enforce efficiently using existing software (ftrace) or
hardware (PT) mechanisms. While both tracing mechanisms
can be toggled on/off at runtime, they require the audit
system to track each function executed within the kernel
(e.g., to find anomalies). This defeats the initial motivation to
selectively trace. Second, control-flow traces must be resilient
against tampering to ensure accurate investigation. This is
challenging because an advanced attacker could trick the
vulnerable kernel (even before full compromise) to disable
tracing or invalidate in-memory trace buffers [27, 39]. This
limitation applies to both ftrace and PT-based logging.

5. APPARE

APPARE is a framework that efficiently records anoma-
lous and unlikely control-flow traces to enable the inves-
tigation of attacks involving sophisticated kernel control-
flow hijacks. To address outlined challenges (§4), APPARE
implements two key aspects: (a) a system call reference
behavior identifier based on the augmentation of hybrid
(static-dynamic) analysis with semantic reasoning (§5.1) and
(b) a virtualization-aided processor tracer for secure, selective
tracing of arbitrary kernel functions during execution (§5.2).

5.1. Augmented Reference Behavior Analysis

APPARE derives generalizable syscall reference behav-
ior (F,, Fig. 4) by combining dynamic profiling and static
analysis (i.e., hybrid analysis) with semantic reasoning.
This augmented analysis is performed by our toolchain—
APPARE-PROFILER-through a three-stage workflow (Fig. 6).
In the first stage, the profiler takes a small set of represen-
tative workloads and executes them to generate dynamic
syscall traces (@, §5.1.1). In the second stage, the profiler
constructs a comprehensive kernel knowledge base using

Dynamic Representative Per-syscall
profiling workloads kernel behavior
° - 0
ﬂ dry run O@
APPARE-
Profiler
> Static Call Graph (CG) Per-function info.
A Multi-level | -----------=-< N ~CCIIIZCZIICZIICCIICO
4 type & pointer|
>

'

. '

o

'

Def./dec. l
global types

analysis

2]

RAG-based

System:
The role is a kernel security analyst to understand
inference

benign control flow behaviors.

Historical {<functions>} source code:
Source<__x64_sys_close>+ Source<close_fa>

,G(f’t hlstqr!cal Profiled backward-slice {func.<signature>}: -
information. __xX64 sys_close<signature>

-> close_fd<signature>
-> filp close<signature>

Reason <caller> --> (unprofiled) <callee> ? -
Source<£ilp close><nfs_file flush>+
TextSummary<£ilp_close><nfs_file_flush>+
Defined/declared global types

<filp close><nfs_file_flush> @

©

j Yes! Plausible for NFS operations. NFS is a known filesystem that would

register £ilp->f op->flush handler when invoked on an NFS file...

®

NO! The caller is not inherently responsible for credential manipulation.
Not part of any historical execution path, highly unusual.

Reason <caller> --> (unprofiled) <callee> ? @ <«
Source<filp close><commit_creds> + TextSummary<>...

Figure 6: Overview of augmented reference behavior analysis:
(@) representative workload profiling, (@) kernel knowledge
base construction, and (€) RAG-based code-semantic infer-
ence to explore uncovered functions. LLM inference (prompt)
examples (@), ®) are for demonstration purposes.

a compiler-based static analyzer, code extractor, and text
summarization components (@, §5.1.2). In the last stage, the
profiler leverages this knowledge base and collected traces
to classify potential unprofiled function candidates as likely
or unlikely using semantic reasoning (€, §5.1.3).

For control-flow reasoning, APPARE employs a Re-
trieval Augmented Generation (RAG)-based code semantics
inference approach [40], using a large language model
(LLM) to (a) retrieve relevant extracted code semantics
and (b) infer likely but unprofiled control-flow transitions,
thereby expanding dynamic syscall profiles. Recent studies
have demonstrated that LLLMs can reason effectively about
source-level code semantics and function behavior [41-—
43], achieving state-of-the-art results in tasks like indirect
call prediction [44]. Building upon these insights, APPARE
evaluates whether an unprofiled function could plausibly
(likely) continue a syscall’s observed control flow.

Please note that APPARE’s inference approach does not
compromise precision with respect to the kernel’s control-
flow graph (CG). The inference process only considers

functions that are valid control-flow targets—i.e., functions
corresponding to actual edges in the CG.

5.1.1. Dynamic representative workload profiling.

APPARE-PROFILER gathers kernel function execution
traces triggered by individual syscalls of representative
workloads. We define representative workloads as those that
involve feature-rich OS interactions, including filesystem
access, inter-process communication (IPC), device 1/O, and
networking. Representative workloads employed throughout
our experiments are detailed in §6, and our empirical study
(in §7.1) shows that a small set of workload profiles can
generalize to typically audited real-world programs.

The profiler generates traces by executing representative
workloads and capturing all functions invoked during syscalls.
The collected syscall execution traces provide concise and
targeted seeds (Fy — Fy, Fig. 4) for subsequent reference
set expansion. Crucially, the seed-based design restricts the
scope of RAG-based LLM inference, eliminating the need
to encode the full kernel callgraph, a task that is impractical
due to LLM context-length limitations [44, 45].

It is important to ensure workload profiling remains free
from adversarial interference, as otherwise the resulting initial
reference behavior set may be contaminated with “anomalous”
control flows. To this end, APPARE’s profiling is carried out
in a controlled environment (e.g., isolated virtual machines)
and is conducted offline prior to production deployment. In
practice, this profiling phase is a one-time effort per-kernel
version. We expect IT administrators (in enterprises where
auditing is deployed) to integrate such profiling into their
software testing pipeline.

5.1.2. Static kernel knowledge base extraction.

To facilitate semantic inference, APPARE constructs a
static kernel knowledge base encompassing both the structure
of kernel control flows (i.e., a static call graph C'G) and the
semantic information of functions. The generated C'G guides
the LLM in identifying potential yet unobserved control-flow
paths adjacent to dynamically profiled seed functions, while
associated code information offers essential semantic context
to enhance reasoning accuracy.

APPARE utilizes type- and pointer-based analysis tech-
niques [38, 44] to generate the static C'G with future
opportunities to incorporate more sophisticated methods for
further precision improvements [46, 47]. For each kernel
function, APPARE extracts the following information:

1) Function source code and signatures;

2) Textual semantic summary of relevant functions, gener-
ated by the querying LLM from source code;

3) Global kernel context such all declared or defined global
object types (structures). This enhances the LLM’s
ability to discern high-level semantic relationships, a
capability validated by recent studies [44, 45].

The aforementioned semantic information significantly
guides the LLM toward precise inference. According to our
validation evaluation (§7.2), providing such comprehensive
context can improve code inference accuracy by over 14%.

Algorithm 1: Syscall reference set identification.

1 Function ENHANCEREFERENCESET

2 Input: A syscall’s profiled behavior set (F;), static call

graph C'GG, maximum hops N
3 Output: Enhanced syscall reference set F,
4 /* Derive a dynamic call graph */
5 CGy < GENERATESUBGRAPH (CG, F;)
6 /% Sort CG'y nodes in reversed topology order */
7 Fsorted < REVERSETOPOSORTING (C'Gs.nodes)
8 Sque'ried — {}
9 Fe — Fi
10 foreach F' € F,,pteq do
1 Sfrontie'r <~ {F}
12 foreach hop in 1...N do
13 Sneat {}
14 foreach L € S;trontier do
15 /* Get (unprofiled) callee<V'> of caller<L> */
16 while V' <~ POPCALLTARGETS(CG, L) do
17 if ~CGy.hasEdge(L,V) and

(Lv V) ¢ Sque’ried then

18 /* LLM-based reasoning (Fig. 6) */
19 ANS «+ QUERYLLM(CGy, L, V)
20 if ANS then
21 /* Enlarge the referential set */
2 Fe — FeU{V}
23 Snezt — Snezt U {V}
24 Sfrontier <~ Snext

5.1.3. LLM-driven code semantics inference.

To predict likely unprofiled functions within syscall
executions, APPARE applies a RAG approach by querying
the LLM with semantically-related code context and static
CG traversal. Algo. 1 (and Fig. 6) illustrate the workflow.

APPARE first gathers all profiled seed functions, and
represents them as a dynamic call graph (CG'y, line 5). It then
processes each seed function individually using a bottom-up
approach, by applying a reversed topological sort over CG'¢
(lines 7-9). For each individual seed node (e.g., filp_close
in Fig. 6), APPARE considers the maximum of its next N
depths (hops), by forward traversal on the kernel C'G (lines
10-14). All the traversed callees are the potential “likely”
candidates (lines 16-18) (e.g., nfs_file_flush in Fig. 6).
To perform code inference, APPARE prompts the LLM with
the semantics information of both the caller and the callee, as
well as the historical context information from the dynamic
call graph CG . To do so, APPARE takes a backward-slice
(from the seed node) of the C'G, inputting the structure of
this backward-slice (see profiled backward-slice in Fig. 6),
as well as all functions’ source code within the backward-
slice. Then, APPARE completes the prompt by inputting
retrieved code semantics information of the caller and callee
(85.1.2, also shown as (@) in Fig. 6). Last, APPARE queries
the LLM (lines 18-23), expanding the syscall’s reference
functions according to the inference decision.

5.2. Virtualization-Aided Processor Tracing

APPARE employs a security monitor executing at the hy-
pervisor privilege mode, called APPARE-LOGGER, to support
efficient, secure, and selective tracing. Such virtualization-
based monitors are widely adopted for kernel security by

industry [26, 27]. For example, Windows 11 enables a trusted
hypervisor by default to support Virtualization-Based Security
(VBS) [48], which defends against page-remapping attacks
and verifies loaded kernel drivers. Similarly, Android/Linux
introduced protected KVM (pKVM) to provide equivalent
protection [49]. APPARE can be integrated with these existing
security mechanisms to support robust kernel auditing.

At a high-level, APPARE-LOGGER enforces restricted
kernel code views depending on the executing syscall
to trap and selectively trace control-flows. In addition to
leveraging Processor Tracing (PT), this is achieved by using
three widely-available hardware primitives:

e Memory view protection—Extended Page Tables (EPT)
and IOMMU—to restrict kernel and device access to
protected or non-reference regions. CPUs today, by default,
use them to isolate VMs from the host.

e Historical branch counters—Last Branch Record (LBR)—
to efficiently restore partial historical contexts before
anomalous control flow. Like PT, such features are also
common in modern CPUs for branch profiling.

e Synchronized hardware timestamp counter—instructions
like RDTSCP—to ensure time can be unified across the
entire system and propagated to all (system call and
control-flow) logs for chronological correlation (§6).

Per-syscall = Auditee runtime exec.

reference =

behaviors & | Kernel
=
‘g Reserved
= |e-Historic-+|«- anomalous -»| Iog) disk

(par tial) ctx. controlﬂow

Trap: s
Hardware
Mem views 'I @
onitor (APPARE-logger)

Figure 7: Overview of virtualization-aided processor tracing.

Fig. 7 shows the workflow of APPARE-LOGGER. Initially,
the logger configures EPT interfaces based on the generated
syscall reference behaviors to establish per-syscall kernel
memory views for the OS (D, §5.2.1). During an audited pro-
gram’s execution, anomalous control-flow triggers automatic
traps to the logger, which toggles (a) PT to enable selective
tracing and (b) LBR to restore partial historical contexts
(@, §5.2.2). The historical contexts are helpful to further
investigate whether anomalous control flow occurs due to
false-positive or true attack behaviors (§7.3). All logs are
securely stored in protected memory and disk regions, while
tracing interfaces are protected against OS-level interference
(®, §5.2.3). Finally, analysts retrieve these logs for further
investigation (using APPARE-PARSER, detailed in §6).

5.2.1. EPT-based restricted code view maintenance.

At system initialization, APPARE-LOGGER generates
restricted kernel code pages for each system call, in addition
to the normal kernel (unrestricted) code pages. Unlike normal
(unrestricted) pages, for each syscall, its restricted code pages

only contain kernel functions within that syscall’s reference
behaviors. The remaining (unprofiled kernel functions) are
overwritten to undefined instructions (#UD2) (%, Fig. 8a).
APPARE-LOGGER preloads both restricted and unre-
stricted code pages in reserved memory at boot. It creates
multiple EPTs: one mapping the guest’s physical addresses
to normal (unrestricted) pages, and additional EPTs mapping
to per-syscall restricted pages. Thus, the logger generates
n + 1 EPTs, where n is the number of system calls, and
the additional EPT corresponds to unrestricted kernel pages.
Each EPT is installed within the EPT-pointer list (EPTP-
list) of the virtual machine control structure (VMCS) by
the logger. This EPTP-list is used to perform fast exitless
switching (explained in §5.2.2) for selective tracing.

5.2.2. Trace toggle by view-switching and guard stack.

At runtime, APPARE enforces switches of kernel code
pages between restricted and unrestricted versions with the
kernel’s help. When an audited program executes a system
call, the kernel executes VMFUNC [39, 50] to switch its
code-view to restricted pages based on the system call (@,
Fig. 8b). The VMFUNC instruction is inserted into the kernel by
lightweight compiler-based instrumentation. This instruction
is an optimized version of a hypervisor-call (vMCALL) that
switches to a different EPT (within the EPTP-list) without
exiting to APPARE-LOGGER (hypervisor).

Note that, the attacker may try to abuse the VMFUNC
instruction to switch back to unrestricted code pages. To
prevent this, VMFUNC is immediately made “inaccessible” in
the restricted pages, once it is performed at the system call
entry. Specifically, the compiler always aligns VMFUNC at
the end of a page using NOP. Hence, after its execution, the
instruction pointer will move to the next page. This allows
the logger to mark the previous (VMFUNC-containing) page
as inaccessible in the EPTs of restricted code pages [51].

During the execution of a restricted code page, any
control-flow transfer to a function outside the reference
behavior raises a #UD2 violation, which is trapped by the
logger (@, Fig. 8b). Upon trapping, the logger sequentially:

1) Generates a log entry to save the timestamp when tracing
begins (used later for chronological correlation);

2) Dumps the current kernel’s historical branch traces
(preceding the anomaly) by using LBR interfaces;

3) Starts tracing control-flow using the PT interfaces;

4) Switches the kernel’s code view to unrestricted pages;

5) Resumes kernel execution (with tracing active).

To stop tracing when the anomalous control-flow ends,
APPARE-LOGGER employs a guarded stack strategy. Specif-
ically, it replaces the kernel stack via the VMCS’s stack
pointer (rsp) [39] with a new stack frame that (a) does not
contain a return address and (b) is preceded by a guard frame
containing #UD2 (similar to the concept of “RedZone” [52]).
Hence, when anomalous control-flow returns to the calling
function, the stack pointer hits the guard frame, and a fault is
caught by the logger (@, Fig. 8b). Note that the attacker can
potentially tamper with the new stack, but doing so would
only mean that tracing is never disabled. On the caught fault,
the logger disables tracing, copies return values between the

Restricted code views EPTP-list

Reference behaviors

(a) Multiple kernel code views maintained by EPTs.

Restricted view Unrestricted view Restricted view

€ #up2

Trace start

APPARE-Logger

e 'O
Tracinvg o Trace stopped
APPARE-Logger | | APPARE-Logger

(b) Control flow tracing enabled/disabled by #UD2.

Figure 8: APPARE’s selective secure control-flow tracing. (a) The monitor maintains restricted code pages that are outside
per-syscall reference behaviors (i.e., code replaced by #UD2 instructions, %)), by using an EPTP-list (a set of EPTs). (b) At
a syscall entry, VMFUNC is performed to switch the current EPT to its corresponding restricted view for trapping/logging.

stack frames, and switches the kernel’s code-view back to
restricted (@, Fig. 8b). Afterwards, any further anomalous
control-flow will again be caught and traced similarly.

5.2.3. Protected trace configurations and regions.

APPARE ensures the integrity and availability of traces
throughout end-to-end collection. This is achieved by pre-
venting the untrusted OS from (a) manipulating or disabling
tracing during anomalous control-flow; (b) tampering with
the traced PT packets or the LBR branch information in-
memory; (¢) overwhelming the system to overflow traced
PT packets in memory before they are persisted; or (d)
corrupting logs after they have been persisted on storage.

APPARE-LOGGER leverages virtualization features [39]
to ensure (a) and (b). Specifically, the logger configures
a virtualization trap on writes to all PT configuration-
related model-specific registers (e.g., TA32_RTIT_CTL) to
prevent their misconfiguration by the untrusted kernel.
Such a trap is also applied to all LBR interfaces (e.g.,
IA32_DEBUGCTL) and recorded branch information (e.g.,
MSR_LASTBRANCH_«). The logger additionally leverages
EPT and PT-passthrough to secure the traced control-flow
packets in memory. In particular, the logger reserves per-
core physical memory regions for trace packets using EPT.
Per-core division avoids concurrency delays. Only the PT
hardware (on each core) is allowed to access its own per-core
reserved region. This is achieved by configuring PT (using
its model-specific registers) to bypass EPT and write only to
allocated physical regions using the Top of Physical Address
(ToPA) buffering feature [39].

To ensure (¢), APPARE-LOGGER configures the PT hard-
ware to generate a non-maskable Performance Monitor Inter-
rupt (NM-PMI) [14, 53] when a per-core PT buffer is full.
This NM-PMI is exclusively handled by APPARE-LOGGER,
which then leverages a standard dual buffering and asyn-
chronous persistence strategy [26]. APPARE-LOGGER dis-
tributes a background thread to persist the previous buffer,
while switching PT to generate packets to the next buffer. In
rare scenarios when both buffers are full, APPARE-LOGGER
waits for a buffer to be persisted before resuming.

Finally, for (d), APPARE-LOGGER leverages standard
hypervisor mechanisms to reserve a protected log storage

TABLE 2: Base software framework and the source code
lines we added or changed for different APPARE components.

Component Base Version SLoC
APPARE-PROFILER FTrace/LLVM/Ollama —/15.0/0.9 1.7k
APPARE-LOGGER Linux-KVM 5.19.0 2.5k
APPARE-PARSER Distorm [55] 3.3 1.5k

disk. Specifically, the hypervisor omits mappings of the log
device’s MMIO in the EPT, causing any guest access attempts
to trigger EPT violations. When PCI passthrough is enabled,
the hypervisor configures the IOMMU (VT-d) to restrict
DMA to guest-assigned devices only, thereby ensuring that
protected log disks cannot be accessed by the guest [26, 54].

6. Implementation

We implemented a prototype of APPARE for Linux oper-
ating system kernels running on the Intel x86-64 architecture.
Tab. 2 shows our prototype’s lines of code.
APPARE-PROFILER. The profiler first uses Linux’s built-in
tracer (ftrace [35]) to generate control-flow profiles for
different system calls executed by a program. It inserts a
profiler routine at the start of each kernel function, which
records the function’s execution during a system call. We
adopt £t race since it is natively supported in modern Linux,
making it easy to use. Although ftrace is not performance-
optimal, this choice is acceptable because profiling is per-
formed offline and is not performance-critical. Then, the
profiler leverages LLVM to extract a kernel knowledge base
and employs Ollama [56] to deploy the Qwen3-32b LLM
for its RAG-based hybrid augmentation. Specifically, we
employed MLTA [38], a state-of-the-art approach to generate
the kernel static call graph. This can be further refined using
more advanced techniques (e.g, KallGraph [46]) when they
become available. We chose Qwen3-32b given that it is
one of the state-of-the-art open-sourced LLMs with coding
and reasoning capabilities [57]. Any other advanced large
language models can be applied to APPARE.
APPARE-LOGGER. The logger is implemented by extending
KVM. In principle, a lightweight single-host-based virtual-
ization approach [58-61] is more suitable, instead of using
a full hypervisor like KVM. We used KVM (like prior

research [26]) to easily implement aspects like reserved
log storage. During initialization, APPARE-LOGGER reserves
memory for creating EPTs with different kernel code views

and per-core PT buffers to collect control-flow traces (§5.2).

The logger configures the system to always enable LBR (only

at kernel-mode execution, by editing MSR_LBR_SELECT).

The logger also incorporates a memory scanner to decipher
the runtime kernel code page layout and store it for later
analysis. This is required because traces collected by PT
must be correctly translated into specific kernel functions for
analysis (next heading). For this to work, the kernel layout
must be saved after its code self-update (e.g., text_poke)
and randomization (i.e., KASLR) at boot-time [36].
APPARE-PARSER. This component is designed to retrieve
and parse the logs for investigation. The result is a temporal
graph of events following happens-before semantics that
contains nodes for syscall audit logs, anomalous control-flow
(recovered to function/basic block-level), alongside its partial
historical control-flow contexts (shown below).

Reserved -sys_close(fd=pipefd..)
(log) disk ...
pipe_release ()
- buf->ops->release ()
.
§ w partial historical context
S
3 gadgets ()
= l prepare_kernel creds ()
parse commit_creds ()
APPARE- — anomalous
Parser A
-sys_write(fd=/etc/passwd..)

The parser relies on Distorm [55] to disassemble the

loaded kernel code layout and decode PT packets to basic
blocks and functions. We applied the basic block pointer
pages strategy in Griffin [62] to enable fast control flow re-
covery. Once APPARE-generated logs are fully recovered, the
analyzer leverages the common protected timestamp installed
within them to unify them and the native syscall audit logs.
Administrators may use graph-based threat hunting [63] and
trace-based root-cause analyzers [53] to determine anomalies
and attack origins. Security analysts may also perform manual
analysis (as demonstrated in §7.2).
Limitations. Our prototype does not currently support the
guard stack (§5.2). Instead, we invoke a VMCALL at the end of
syscalls or context switches to ask APPARE-LOGGER to stop
PT (if enabled). Note that this does not favor our evaluation;
rather, it slightly increases the performance overhead.

APPARE does not currently handle hardware interrupts.
All interrupt-handling functions are added to each syscall’s
reference set. Thus, there are no restrictions on interrupt
behaviors. Our prototype cannot detect anomalous control
flow within those contexts (further shown in §7.3). We
discuss potential solutions in §10.

7. Security Evaluation

In this section, we first individually demonstrate the
system’s logging capability in terms of anomalous kernel
control-flow. Then, we further validate our analysis using
case studies on real-world exploits.

w2
(=1

—+— far

—— ¢p —<— ungqlite

[\o3
(=]

Is —— wget

—_
(=}

(=}

A (not executed)

Uncovered behavior (%)

@%é ‘ﬂ{\\e “\0%6 096(\%\ 6\&@(\\&\‘0@ o %oc\@‘ erl‘edemﬁ%\%@\
Figure 9: The extensibility of representative workloads (§7.1)
to other real-world programs. For each program shown, we
report runtime syscall behavior divergence (uncovered) based
on profiled behaviors from representative workloads. We
listed frequently executed syscalls across selected programs.

- I Mean hops 80th-percentile hops
§4
23
Q
52
<
.]]

Qe 3 X & X e X

o Q & > a0 2 3 (9 N X

A Q0T o (9&‘6\ T &2
o

Figure 10: Mean and 80th-percentile of the minimum hop
distance to the unprofiled functions (executed by programs in
Fig. 9), measured by forward-traversing the kernel CG from
profiled functions (via representative workloads in §7.1). We
listed frequently executed syscalls across selected programs.

7.1. Settings: Reference Behavior Identification

APPARE’s logging capability is grounded in its syscall
reference behaviors. This section describes the configurations
and variants used to generate those reference behaviors.
Representative workload settings. Those workloads are
profiled to generate a set of seed functions (§5.1.1). We
rely on the following representative workloads (through all
experimental evaluations in this paper):

e Linux Test Project (LTP) [64]: OS developers-maintained
common syscall test suite, offering a broad syscall corpus.

e Nginx and Redis: complex server-side applications with
diverse behaviors on the host machine (workloads in §4).
The reason is that those workloads have feature-rich
interactions with the OS. To show this, we empirically
profiled their syscall behaviors and evaluated how well
they generalize to other real-world programs. As shown
in Fig. 9, the representative workloads cover over 91% of
syscall behaviors across the selected programs on average,
with at most 17% of runtime functions uncovered. We discuss
other profiling strategies in §10.
RAG-based inference settings. Given the aforementioned
profiled seed functions, APPARE employs its RAG-based
LLM inference to traverse a maximum /N hops of the kernel
static call-graph C'G and incorporate unprofiled but likely
functions (§5.1.3). An overly large N not only significantly

% of all kernel functions

dup I

dup2 1

read EE—
writc)
writev]
clone =R
execve =]

Iseek B
mmap ST
mprotect ET—]
access B
alarm i/
getpid m—

sendfile Emm—

close
socket
connectE==m]
accept
[0 E = —
sendmsg EEmmm—"
setsockopt EE

getpeername 4

Figure 11: Percentage of identified reference behavior functions

enlarges the reference behavior set (potentially introducing
false-negative logs), but also incurs high LLM inference cost
due to CG traversal path explosion. To address this, we
empirically studied the distribution of uncovered functions
during real-world programs’ (same as programs in Fig. 9)
syscall execution based on profiled behaviors. As shown in
Fig. 10, uncovered functions are reachable from profiled
ones within 2 hops on average across syscalls. Furthermore,
over 80% of reachable functions are approximately <2.23
hops from profiled ones. Therefore, to balance security (i.e.,
approximating reference behaviors) and inference cost, we
set APPARE’s maximum traversal depth (V) to 2 hops.

Variant settings. To quantify our approach’s effectiveness,
we evaluated three APPARE variants for reference behavior
generation: (a) dynamic profiling only (APPARE-dyn), (b)
our approach in §5.1 (APPARE), and (c) naive static expan-
sion: traverse the kernel’s C'G within N (= 2) depths from
dynamically profiled functions and include every function
encountered without semantics inference (APPARE-dyn-sta).
We also evaluated their performance in §8.2.

7.2. Reference Behavior-based Logging Capability

Reference behavior statistics. APPARE leverages hybrid
augmentation to find reference functions for syscalls (§5.1).
We analyzed how much of a control-flow logging capability
is retained by APPARE through this approach, and performed
ablation studies on different variant settings.

Fig. 11 shows the statistics of syscall reference behaviors.
Across all syscalls, APPARE identifies reference behaviors
covering merely 0.01% — 7.11% of kernel functions (1.73%
on average). Even in the worst case, the read syscall’s
reference behaviors contain 7.11% (2974/41837) of kernel
functions. Moreover, by augmenting dynamic profiles to
mitigate its under-approximation, APPARE expands reference
coverage by 2.83x compared to APPARE-dyn. Last, com-
pared to naive static expansion without semantics inference
(APPARE-dyn-sta), APPARE reduces the reference-set size
by up to 97.2% (75.1% on average), thereby maintaining
significantly better anomaly detection capability. Performance
evaluations in §8 further show that this reference behavior
scope reduction only adds small overhead.

wait4 g

fentl BT

10

Appare-dyn-sta Appare Il Appare-dyn

HI HII I . == I A =
0T = O 0 ¥ T = = A = — = =

S35 EEELEEETE 288 SETEELS E
> 5 < 8= S Egz 55 c29058z_1%58 528
L 20 ST 2888 9EE 82 E =% 8% 83872
151 = & | = Q ‘a g
) 8§ » 2 0 o E 9 9 H=T o< 3 g
= & o 25 g8 g3 & z 3 g
= 3 Ho g & 2 2
i °D|‘5 | o © < =)

‘% o Ll

I 29 8

= = 2 8

2 o

amongst all kernel functions for each system call.

<90

280

£ 70

3

250 H H H

=1

2

'—?) I Appare-LLM-RAG 1 Appare-LLM-nonRAG

=0 d X e X X
o A T & X LN
O 00T o 6\&\6\ O o e"&@

A

Figure 12: Validation accuracy of APPARE’s LLM-driven
reference behavior inference.

Takeaway. For control-flow hijacks, after leveraging an initial
vulnerability, the attacker must (a) use ROP/JOP gadgets to
prepare payloads, and (b) execute critical kernel functions to
complete exploits (e.g., obtain root access through functions).
They will evade APPARE’s logging if (and only if) they can
find both within the tiny scope of functions (0.01% — 7.11%)
accessible within the system call reference behaviors. By
RAG-based code semantics reasoning, such a scope is also
significantly reduced (by up to 97.2%) compared to one
without semantics reasoning.

Inference accuracy validation. As APPARE leverages LLM
to reason about the code semantics and enhance the reference
behaviors, it is important to understand the accuracy. Given
that there is no ground-truth for the inference behaviors, we
used the dynamically profiled functions for validation. We
selected 10 syscalls and, for each, randomly sampled 50% of
the “caller — callee” pairs observed in their profiled traces.
We queried the LLM to determine whether each sampled
caller — callee is plausible given its dynamic context.

To understand the benefit of RAG-based LLM inference,
we compared two prompting strategies: supplying the LLM
with both the extracted kernel knowledge base and trace
context (APPARE-LLM-RAG, Fig. 6), and providing only
the caller and callee source code without historical or
semantic context (APPARE-LLM-nonRAG).

Fig. 12 reports the results. RAG-based inference achieves
83.7% validation accuracy versus 69.7% without RAG. These
results align with prior work [44], indicating that contextual
code knowledge (e.g., historical call-stack summaries and the

TABLE 3: APPARE’s logging capabilities in kernel exploits.

function’s global summaries) is crucial for inference. Future
work could boost accuracy by using a more powerful LLM
(than the current QWen3-32b).

7.3. Exploit Case-Study and Validation

This section further analyzes APPARE’s logging capabil-
ity using case-studies on real-world exploits.

Attack setup and payload category. We randomly se-
lected a total of 11 real-world CVEs, accompanied by their
corresponding PoCs, from public exploit repositories. The
selected vulnerabilities contain various types, including stack
and heap out-of-bounds (OOB) write, use-after-free, and
double-free. Tab. 3 shows the concrete list of CVEs. We
used syscall reference behaviors generated from §7.2.
Exploit logging analysis. Based on our selected vulner-
abilities and their real-world PoC exploits, our analysis
(Tab. 3) shows that APPARE can log in-memory behavior of
anomalous control-flow (from PT) in the vast majority of
exploits (except for Vi1).

We found that none of the kernel functions used in
these exploits were within APPARE’s reference behaviors
of the corresponding syscall(s) during the exploit, and thus,
all control-flow hijacks can be logged. This is expected:
the commonly used gadget functions for exploits, like
prepare_kernel_creds and commit_creds, are only
used in certain scenarios (e.g., during kernel thread creation).
However, as our prototype ignores interrupt contexts ($6),
exploits within such contexts (like Vi1) evade detection. We
discuss addressing this limitation in §10.

In contrast with APPARE, existing auditing solutions (e.g.,
Auditd [11] and OmniLog [26]) capture only syscall entries
rather than function-level information. As a result, they do
not report any of the functions in Tab. 3.

Case study 1: CVE-2021-4154. To validate our analysis
with APPARE’s prototype, we reproduced a PoC attack that
leveraged CVE-2021-4154. This exploit manipulates sensitive
objects and gains control-flow hijacking capabilities, which
are then used to compromise the kernel. Due to the different
memory and object layouts among different kernel and
compiler versions, the reproduced resulted in a kernel crash
instead of fully compromising the kernel. Note, however,

11

Kernel Kernel stack

PoC CVE Exploited Functions code pages (manually recovered)
V1: 2021-26708 | dw_dma_initialize_chan (V) Syscall %1% [syscall return High

. switch_task_namespaces (v'); prepare_kernel_cred (v') pop r11;
V2: 20214154 commit_creds (v) setd r_;'_s_ysret = Oxffff ffff 8200 012a || Attacker

T N ef0: T "
V3: 2021-22555 sw1tch'_task_namespaces (v'); prepare_kernel_cred (v') vuln_obj->fun() : commit_creds | Ox{Fff_ffff 810b_8ef0 C;mﬂed
commit_creds (v') Roviorad) H pt_regs

V4: 2021-42008 | __request_module (V') (by LBR) : i 0x§§§_§£§_8103_d996
V5: 2021-43267 | __request_module (v'); regcache_mark_dirty (v') : Yrsp: OxFFIT_ffff_8103_d997

. find_task_by_vpid (v); prepare_kernel_cred (v') Unprofiled page, | add rsp, 9"8‘_); : +=0x80.
Ve6: 2022-0185 commit_creds () (triggers PT) pop tbx; ret; | Y Low
V7: 2022-0995 | prepare_kernel_cred (v'); commit_creds (v)

. native_write_cr4 (v'); prepare_kernel_cred (v') . . .
V8: 2017-6074 | mit_cred () Figure 13: Case study of RetSpill’s control flow hijacking [8]
V9: 2022-25636 | prepare_kernel_cred (v); commit_creds (v) with APPARE enabled (red control flows are logged).
V10: 2023-2598 | call_usermodehelper_exec (v); queue_work (v')
V11: 2022-1015 | __do_softirq (X); commit_creds (X)

that crashing is a common indication of a successful kernel
exploit [31, 65]. Nevertheless, before the crash, APPARE
successfully logged kernel functions in the exploit payloads.
Case study 2: RetSpill [6]. To show the effectiveness of
APPARE, we reproduced RetSpill’s crafted attack scenario,
which exploits the kernel with Linux’s KCFI deployed [8].
Current KCFI implementations enforce control flow only at a
coarse granularity, allowing any indirect call or jump to target
any valid function entry point. Therefore, attacks like RetSpill
would hijack the control flow to a controlled function entry
point. It then never relies on the ability to hijack forward-
edge control flow again, but uses data spilled on the kernel.
We enabled APPARE and manually analyzed the logs (results
in Fig. 13). In such a scenario, a vulnerable kernel driver’s
ioctl interface allows overwriting a function pointer to a
malicious gadget. Before triggering that function pointer (by
an ioctl syscall), the adversary spills all the gadgets (a
sequence of target instructions and kernel functions) onto
registers (pt_regs), which will be pushed to the kernel
stack at the target syscall entry. According to our analysis in
Fig. 13, all gadgets and target functions (commit_creds)
were outside of the reference set and thus captured. By
inspecting the recovered historical contexts (from LBR), it
also reveals that the anomalous paths are triggered by an
indirect function pointer of vunl_obj—>fun ().

7.4. Threat to Validity

APPARE’s RAG-assisted reference behavior augmenta-
tion can introduce false-positive functions into the reference
set. Attacks composed entirely of functions that lie inside
syscalls’ reference sets would evade detection. LLM-based
inference may propose functions that are semantically re-
lated but never executed in the actual syscall context. For
example (List. 2), syscall execve loads an executable file
into the memory for new process execution. It invokes
load_elf_binary and thus legitimately exercises file-
backed memory mapping (ext4_file_map). It should
not execute backend-specific mapping routines (e.g., GPU
backend or procfs mappers). However, APPARE’s LLM
augmentation also adds these functions, and therefore over-
approximates the reference set. The false-positive enlarges the
set of “allowed” operations. An adversary can chain functions

Listing 2: An false-positive inference example of LLM-RAG.
Green blocks: true-positives; yellow blocks: false-positives.

1 /+ for syscall execve() */

__x86_sys_execve —-> /% true-positives =/
do_execveat_common —>
4 bprm_execve —>

load_elf_binary ->

6 elf map —>

R

8 ext4_file map |
9 1915_gem_mmap |
10 proc_reg_mmap

/* false-positives x/

that remain within the reference set (across multiple syscalls)
to construct an exploit that bypasses APPARE’s detection.

8. Performance Evaluation

This section describes APPARE’s performance under
different settings. All experiments were conducted on an
Intel Xeon Gold 6430 server. The machine was configured
with 128GiB memory and 512GB NVMe SSD storage. For
RAG inference, we employed a Nvidia HI00 NVL GPU
with 94GiB memory to deploy the LLM locally.

We configured our target virtual machine (running the
audited operating system and applications) with 8 virtual
processors (VCPUs), 8GiB memory, and a 100GB virtualized
(virtio) storage disk. The remaining resources of the server
were used to generate client workloads (e.g., send user
requests from the host to the Nginx webserver running within
the guest VM) in a saturated manner.

Evaluation settings. All APPARE-related settings (refer-
ence behavior generation) and variants (including APPARE,
APPARE-dyn, and APPARE-dyn-sta) are aligned with §7.1.

To compare APPARE with existing system call-based
audit systems, we reproduced and employed the state-of-the-
art OmniLog [26] and Linux’s default Auditd [11]. Since
OmniLog is designed for a different kernel version, we
ported it to our kernel version. Our port does not include
OmniLog’s proposed compression method [26], but note that
doing runtime compression increases performance overhead.
Since APPARE depends on conventional audit systems to
generate syscall logs, we also measured the overhead of
OmniLog+APPARE to show a setting where all logs are
captured (and also protected against the kernel).

We evaluated all aforementioned settings within the
virtual machine with device (storage) passthrough. This is a
common practice for virtualization monitor-based systems
to avoid the impact of device emulation [26].

8.1. Micro-Benchmarks

Reference behavior inference time overhead. We measured
APPARE’s per-syscall inference time (§5.1.3) with a kernel
call-graph traversal depth of N=2 (§7.1). On average,
APPARE requires 2.44 hours to generate the reference be-
havior for one syscall. Fig. 14 lists the ten slowest syscalls,

12

TABLE 4: APPARE-LOGGER operation cost breakdown.

Runtime operation Detailed tasks Cycles
System call entry
Switch EPT Execute VMFUNC in entry function 310
Anomalous control-flow
Enable PT on #UD2 Handle #Up2, write TA32_RTIT_CTL 3020
Disable PT on return Handle fault, write TA32_RTIT_CTL 3075
Switch full buffer Handle NM-PMI, switch buffers 4964

~

o

Time taken (hours)

0
S & X& e X e &
& ¥ <) N A o a9 A
s o « o @ﬂﬁ%‘ S o o
<

Figure 14: Top-10 inference time-consuming syscalls during
augmented hybrid reference behavior analysis (§5.1).

whose inference times range from 0.9 to 4.4 hours, due to
their complexity in the kernel call graph. Nonetheless, this
is a one-time effort (§5.1) performed per kernel.

Runtime operation cost breakdown. APPARE executes
several runtime operations to trace anomalous control-flow
during a system call (§5.2). To measure their cost, we wrote
a custom benchmark that executed the getpid system call
in a tight loop for a million iterations to count the average.
During each system call, we artificially enabled anomalous
control-flow tracing by restricting a fixed kernel code page.
We measured all times using RDTSCP.

Tab. 4 shows the results. At a system call entry, a
VMFUNC is performed to enforce kernel function and object
profiles (310 cycles). When the kernel executes the restricted
code page, it raises a #UD2 trap to the logger to start the
processor trace (PT). This takes 3020 cycles, with most
of the time spent handling the #UD2 trap (~2400 cycles).
Afterwards, another #UD2 round trip is executed to notify
the APPARE-LOGGER to disable PT. The sequence of steps
is the same as enabling PT; hence, this roughly takes
the same amount of time (3075 cycles). Note that while
toggling processor trace (PT) is relatively expensive, under
well-generated reference behaviors, these operations happen
infrequently (§8.2). Hence, their impact is amortized.

Memory consumption breakdown. The logger consumes
memory to (a) maintain restricted kernel code pages and
track anomalous control-flow (§5.2.1), (b) set up multiple
EPTs (Fig. 8a), and (c) store processor trace (PT) packets.
APPARE-LOGGER requires 9.6MiB of memory to keep
restricted code pages. Moreover, we reserved 4GiB of
memory for multiple EPT tables. However, during runtime
experiments, we observed that the actual amount of the
required memory is less than that. In the future, to cut down
EPT memory budgets, APPARE could reuse the same EPT
entries for multiple versions of EPTs (instead of performing
deep copies). Additionally, for the PT buffers, APPARE
reserves per-core dual-buffer TOPA regions of 64MiB.

TABLE 5: Selected real-world programs and their workloads.

Application | Workload Description
Nginx Default 4 worker threads; tested with the ApacheBench
of 10K requests for a 10KB file and 12 client concurrency.
Redis Default 16 databases; tested by Redis-benchmark of 1M
sets and 1M gets for 32 bytes data with 1000 clients.
Default settings; tested by Memaslap of IM set
Memcached and 1M get f(%r 32 bytes ydata with 5(%3 clients.
Tzip Phoronix benchmark: pts/compress—-7zip.
OpenSSL Phoronix benchmark: pts/openssl.
50
?i 40 I Auditd
g [JOmniLog
230 I OmniLog+Appare
5 I Appare
3 20
‘E 10 I
0-= - Y —=m=
I T
e

Figure 15: APPARE runtime overhead compared with existing
audit systems. The number of syscalls per-sec (from left to
right): 63247, 35323, 137006, 743, and 99. The percentage
of control-flow violations (#UD2) among all syscalls from
left to right: 2.1%, 5.6%, 8.7%, 5.3%, and 6.6%.

8.2. Real-World Programs

Settings. We chose five real-world applications to generate
profiles: web server (Nginx), key-value stores (Redis, Mem-
cached), compression software (7zip), and cryptographic
computation (OpenSSL). These applications have also been
evaluated by prior auditing research [25, 26] for enterprise
computers. Tab. 5 lists the real-world programs and their
well-known workloads. We ran each experiment 5 times and
present average results for each application.

Results. Fig. 15 presents the observed runtime overhead
and statistics. The geometric mean overhead of APPARE
across all programs is 2.0%. For high-performance programs
such as Memcached, Redis, and Nginx, APPARE incurred
higher overheads, but this still ranged only from 3.0% to
6.8%. This slightly increased overhead comes from the high
system call event throughput of these programs, as well as
runtime violations related to control flow. Nonetheless, given
APPARE’s augmented reasoning approach to derive reference
behaviors (§5.1), control-flow violations (logging) happen
infrequently. Thus, the overall overhead is modest.

Comparing APPARE’s overhead with other system call-
only audit systems, we observe that its overhead is compara-
ble to the state-of-the-art (OmniLog), whose geometric mean
overhead was 2.4%, while remaining significantly faster
than the deployed Auditd (geomean was 9.6%). Combining
APPARE and OmniLog gives us an audit system that tracks
all system calls and control-flow traces, and such a system
(OmniLog+APPARE) still only incurred a geometric mean
overhead of 4.3%, with a worst-case of 19.3%. For reference,
this is still significantly faster than the overheads incurred
by Auditd (e.g., up to 260% for Nginx).

13

20
5 sl -/prare-dyn I Appare-dyn-sta
3 ppare
[}
£ 10}
>
o
« 5f
[}
ot v@éﬁ e g™

Figure 16: APPARE runtime overhead (by using variations
shown in §7.2 to generate syscall reference behaviors).

Fig. 16 illustrates APPARE’s performance overhead break
down upon variations. Specifically, using pure dynamic
profiles as reference behaviors (APPARE-dyn) is generally
low, with syscall-intensive programs seeing the highest
overheads (14.3%). This is due to the significant under-
approximation of benign syscall behaviors using dynamic
profiling. In contrast, APPARE and APPARE-dyn-sta im-
pose similar, modest overheads—averaging 2.0% and 1.7%,
respectively. These results show that APPARE balances per-
formance with accurate approximation of syscall behaviors,
while maintaining a tight reference-behavior scope (§7.2).
Takeaways. APPARE incurs modest performance overhead
across real-world applications that is comparable to the state-
of-the-art audit systems that are designed to log syscall
information only, while logging richer information to help
track sophisticated kernel exploits (§7). For control flow
logging, APPARE’s augmented hybrid approach (§5.1) also
effectively balanced the approximation of syscall reference
behaviors and runtime logging costs.

9. Storage Evaluation

This section describes APPARE’s log entry sizes, and the

storage required to maintain them over system call-only logs.
Log entry sizes. We leveraged Auditd as the reference
for syscall log storage (on average 330 bytes per log entry).
Control flow traces are of variable-lengths, and generated by
the hardware during indirect jumps and calls. On average,
their length is less than a byte (per packet).
Storage requirement. We used three applications, Nginx,
Redis, and Memcached, with the workloads listed in Tab. 5
to evaluate the storage requirement, and compared it with
system call logs produced by Auditd. Note that we do not
compare with OmniLog, because it uses an efficient com-
pression algorithm, while both APPARE’s current prototype
and Auditd produce uncompressed logs. A basic block-level
pre-summarization technique [14] can further optimize PT
storage needs, which we leave as future work.

We found that APPARE’s log storage requirement is
comparable to Auditd. With selective tracing, control-flow
traces do not incur high overhead (unlike prior work [14, 15]).
For Nginx, system call logging from Auditd reaches a
throughput of 11.6 MB/s, while APPARE produces control-
flow traces at a rate of 4.1 MB/s. For Redis, syscall log

throughput is 8.6 MB/s, and APPARE produces control-flow
traces at a rate of 5.1 MB/s. Finally, for Memcached, syscall
logs are generated at 42.0 MB/s, while APPARE produces
control-flow traces at 26.0 MB/s.

We were also curious to see how selective anomalous
control-flow tracing (§5.2) would compare to (a) full tracing
using PT and (b) pure-dynamic profiling, i.e., APPARE-dyn
(with under-approximation). Our results show that enabling
PT for full syscalls results in extremely high throughput, with
more than 133.6 MB/s (32.6x), 78.1 MB/s (15.3x), and
170.6 MB/s (6.6 x) for Nginx, Redis, and Memcached, respec-
tively. For APPARE-dyn, its tracing throughput ranges from
12.5 — 43.5 MB/s. This shows the importance of APPARE’S
selective tracing design, which significantly reduces the size
of control-flow logs—by ~50% and ~91% compared against
dynamic profiling and tracing-all, respectively.

10. Discussion and Future Work

Platform portability. APPARE’s hardware primitives (men-
tioned in §5.2) are also available on platforms like ARM. In
particular, APPARE’s control flow tracing can be supported
using Embedded Trace Macrocell/Extension. LBR-based his-
toric context recording can be achieved by recent features like
the Branch Record Buffer Extension. EPT for selective trace
and memory protection can be supported by Stage-2 Page
Table. Those features have been adopted by existing work,
for both instruction-level tracing for debugging [66, 67], and
virtualization-based memory protection [68].

Alternative monitor design choice. Our current design de-
ploys APPARE-LOGGER alongside a trusted hypervisor, thus
requiring virtualization extensions. Although such extensions
are widely deployed [61], they may introduce non-trivial
performance costs in specific circumstances (e.g., upto 30%
overheads on memory-intensive workloads despite hardware
optimizations [69-71]). An alternative design that avoids
such costs would be to deploy an intra-kernel isolation-based
security monitor [72—74]. These monitors leverage hardware
features such as Intel PKS [75] to create a higher virtual
privilege for a trusted component in kernel mode, effectively
deprivileging the main kernel with generally low overheads.
Deployed alongside such a monitor, APPARE can enable
selective secure tracing (§5.2) by controlling the MMU
interface and page tables to enforce per-syscall restricted
views. It can also trap PT-related registers for selective
tracing, while instrumenting MMIO/DMA configurations
to protect in-memory tracing and persistence.

Alternative profiling strategies. APPARE employs represen-
tative workloads (§7.1) as the initial seed for constructing the
reference set. Another choice is full system-wide profiling,
where all running workloads, including programs and back-
ground daemons, are dynamically profiled during (offline)
syscall execution to derive reference sets. While this approach
may yield a more comprehensive set of executed functions,
the current reliance on ftrace would incur substantial
storage and parsing overhead (§6). We leave the exploration

14

of efficient techniques for whole-system workload profiling
(e.g., compiler instrumentation [19]) to future work.

Interrupt context handling. APPARE currently ignores
interrupt contexts (§6), but this can be addressed by adopting
the same technique used in §5.1, namely, profiling interrupt-
related functions and building reference sets for each interrupt
context. The hypervisor could then set up a per-interrupt
code view by interposing the exception vector entries (IDT).
However, due to the timing sensitivity of interrupts, our
ftrace-based analyzer does not capture executed functions,
leading us to omit them in the prototype. One solution could
be to leverage a lightweight compiler (LLVM) instrumenta-
tion [19]. We leave the development of such mechanisms
for interrupt contexts to future work.

Whole exploit lifecycle investigation. While APPARE took
a stride toward auditing anomalous control flow during kernel
exploits, a complete investigation requires reconstructing the
entire exploit lifecycle—from attack preparation to privilege
escalation. Real-world exploits often involve preparatory
phases such as heap spraying, object reuse, and controlled
overwrites that occur long before control-flow hijacking,
sometimes spanning multiple system calls. Future work
should extend auditing to capture these complicated prepara-
tory steps, including memory layout manipulation and object
misuse, to reveal how early data corruption evolves into
arbitrary write attack primitives and final privilege escalation.

11. Related Work

Privileged system auditing. Virtualization-based monitors
have been leveraged to improve auditing security. Back-
Tracker [9] is the seminal work on leveraging a hypervisor
to trap and monitor the important activities (e.g., file oper-
ations and syscalls) of a guest OS kernel. More recently,
OmniLog [26] presented a generic system architecture to
securely collect and persist system call logs, with one of its
designs built on a virtualization monitor. There have also been
designs that leverage other privileged system components like
TrustZone [76-78] and the NestedKernel [79] to protect logs.
APPARE’s design is inspired by such designs. However, all
prior systems deal with securing general (syscall-level) logs
from an untrusted kernel, and do not improve the logging
granularity to track sophisticated kernel exploits.

Kernel control-flow specialization. APPARE’s reference
behavior-based control-flow tracing is inspired by runtime
application-driven kernel debloating systems [18-20, 80]. In
this regard, APPARE is most related to Shard [19], which
also leverages restricted code pages to determine when
kernel execution is violated. However, these systems have an
orthogonal goal: to prevent kernel exploits by reducing the
available codebase. This requires them to enable expensive
mechanisms like control-flow integrity (CFI) [81] on profile
violations, unlike APPARE’s lightweight secure hardware
tracing. While logging of a violation was explored by FACE-
CHANGE [20], it only logged the initial function (which

can be circumvented by strong attackers) but not the entire
anomaly control-flow path like APPARE.

Hardware control-flow tracing. PT has been widely applied
for program diagnoses, such as root cause analysis [53, 82—
85], bug reproduction and hunting [86-89]. Gist [84] and
Snorlax [85] leverage PT to track thread interleavings to
identify race conditions and concurrency bugs. POMP [83]
and REPT [82] perform reverse debugging of program
failures by tracking information flow on PT. ARCUS [53]
further aids in root cause analysis through symbolic execution.
Meanwhile, PT-assisted CFI enforcement is another research
area. While FlowGuard [90] and PT-CFI [91] leverage PT to
accelerate CFI violation detection, Griffin [62] and uCFI [92]
adopt it to enforce finer-grained CFI for user programs.

12. Conclusion

APPARE is a fine-grained auditing framework for inves-
tigating sophisticated kernel exploits. Using systematic (a)
augmented hybrid syscall reference behavior identification
and (b) virtualized selective and secure tracing, APPARE
traces anomalous control-flow behaviors within the kernel.
Our evaluation on real-world workloads and vulnerabilities
shows that APPARE can effectively log the in-memory attack
control-flow behavior during exploits with low overheads.

Acknowledgment

We thank our shepherd and reviewers for their construc-
tive feedback on improving the paper. We also thank Rahul
Priolkar and Kaijie Zhu for their help with experiments and
discussion. This research is supported by the National Re-
search Foundation, Singapore, the Cyber Security Agency of
Singapore under its National Cybersecurity R&D Programme
(Fuzz Testing <NRF-NCR25-Fuzz-0001>), and the US Air
Force Office of Scientific Research (AFOSR) under award
number FA9550-24-1-0204. Any opinions, findings and
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Research Foundation, Singapore, the
Cyber Security Agency of Singapore, or AFOSR.
References
[1] Kernel self-protection. https://www.kernel.org/doc/
html/v5.4/security/self-protection.html?highlight=
kaslr#kernel-address-space-layout-randomization-
kaslr. Online; Accessed 10 January 2025.

Jonathan Corbet. Supervisor mode access prevention.
https://lwn.net/Articles/517475, 2022. Online; Accessed
10 January 2025.

Cook: Security things in Linux v5.3. https://Iwn.net/
Articles/804849/.

Elena Reshetova. x86/entry/64: randomize kernel stack
offset upon syscall. https://lwn.net/Articles/785484,
2019. Online; Accessed 10 January 2025.

Sami Tolvanen. Kcfi support. https://lwn.net/Articles/
893164, 2022. Online; Accessed 10 January 2025.

(2]

[4]

(5]

15

(6]

(7]

(8]
(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing,
Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili, and
Tiffany Bao. Retspill: Igniting user-controlled data to
burn away linux kernel protections. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred:
Escalating privilege in linux kernel. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022.

RetSpill: KCFI_eval. https://github.com/sefcom/
RetSpill/tree/main/experiments/kcfi_eval.

Samuel T King and Peter M Chen. Backtracking intru-
sions. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP), Bolton Landing,
NY, October 2003.

R. Sekar, H. Kimm, and R. Aich. eaudit: A fast, scalable
and deployable audit data collection system. In 2024
IEEE Symposium on Security and Privacy (SP), 2024.
SUSE. Understanding Linux Audit.
https://documentation.suse.com/sles/12-SP4/html/
SLES-all/cha-audit-comp.html.

Yang Ji, Sangho Lee, Evan Downing, Weiren Wang,
Mattia Fazzini, Taesoo Kim, Alessandro Orso, and
Wenke Lee. Rain: Refinable attack investigation with
on-demand inter-process information flow tracking. In
ACM Conference on Computer and Communications
Security (CCS), 2017.

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan
Downing, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Enabling refinable cross-host attack investigation
with efficient data flow tagging and tracking. In USENIX
Security Symposium (USENIX), 2018.

Jun Zeng, Chuqi Zhang, and Zhenkai Liang. Palantir:
Optimizing attack provenance with hardware-enhanced
system observability. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, 2022.

Carter Yagemann, Mohammad A. Noureddine, Wajih Ul
Hassan, Simon Chung, Adam Bates, and Wenke Lee.
Validating the integrity of audit logs against execution
repartitioning attacks. In ACM Conference on Computer
and Communications Security (CCS), 2021.
Cve-2021-22555 details. https://nvd.nist.gov/vuln/
detail/CVE-2021-22555.

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: dynamic causal monitoring for distributed
systems. In Proceedings of the 25th Symposium on
Operating Systems Principles, 2015.

Hsuan-Chi Kuo, Akshith Gunasekaran, Yeongjin Jang,
Sibin Mohan, Rakesh B Bobba, David Lie, and Jesse
Walker. Multik: A framework for orchestrating multiple
specialized kernels. arXiv preprint arXiv:1903.06889,
2019.

Muhammad Abubakar, Adil Ahmad, Pedro Fonseca,
and Xu Dongyan. Shard: Fine-Grained Kernel Special-
ization with Context-Aware Hardening. In Proceedings
of the 30th USENIX Security Symposium (Security),
2021.

https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr#kernel-address-space-layout-randomization-kaslr
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr#kernel-address-space-layout-randomization-kaslr
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr#kernel-address-space-layout-randomization-kaslr
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr#kernel-address-space-layout-randomization-kaslr
https://lwn.net/Articles/517475
https://lwn.net/Articles/804849/
https://lwn.net/Articles/804849/
https://lwn.net/Articles/785484
https://lwn.net/Articles/893164
https://lwn.net/Articles/893164
https://github.com/sefcom/RetSpill/tree/main/experiments/kcfi_eval
https://github.com/sefcom/RetSpill/tree/main/experiments/kcfi_eval
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://nvd.nist.gov/vuln/detail/CVE-2021-22555
https://nvd.nist.gov/vuln/detail/CVE-2021-22555

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang,
and Dongyan Xu. Face-change: Application-driven
dynamic kernel view switching in a virtual machine. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2014.
Microsoft Learn. Event tracing for Windows (ETW),
2021. https://learn.microsoft.com/en-us/windows-
hardware/drivers/devtest/event-tracing-for-windows-
-etw-.

Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan,
Adam Bates, Christopher W. Fletcher, Andrew Miller,
and Dave Tian. Custos: Practical tamper-evident audit-
ing of operating systems using trusted execution. In
27th Annual Network and Distributed System Security
Symposium, NDSS, 2020.

Riccardo Paccagnella, Kevin Liao, Dave Tian, and
Adam Bates. Logging to the danger zone: Race condi-
tion attacks and defenses on system audit frameworks.
In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020.
Viet Tung Hoang, Cong Wu, and Xin Yuan. Faster yet
safer: Logging system via Fixed-Key blockcipher. In
31st USENIX Security Symposium (USENIX Security
22), 2022.

Adil Ahmad, Sangho Lee, and Marcus Peinado. Hard-
Log: Practical tamper-proof system auditing using a
novel audit device. In Proceedings of the 43rd IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2022.

Varun Gandhi, Sarbartha Banerjee, Aniket Agrawal,
Adil Ahmad, Sangho Lee, and Marcus Peinado. Re-
thinking System Audit Architectures for High Event
Coverage and Synchronous Log Availability. In Pro-
ceedings of the 32nd USENIX Security Symposium
(Security), 2023.

Chugqi Zhang, Jun Zeng, Yiming Zhang, Adil Ahmad,
Fengwei Zhang, Hai Jin, and Zhenkai Liang. The
hitchhiker’s guide to high-assurance system observabil-
ity protection with efficient permission switches. In
Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, 2024.
Performance Anomaly Detection with Intel
Processor Trace and Intel VTune Profiler.
https://www.intel.com/content/dam/develop/external/
us/en/documents/session1-talk3-844182.pdf.

Tenable Cyber Exposure Study - Application
Software Security: Risk Prioritization. https:
//docs.tenable.com/cyber-exposure-studies/application-
software-security/Content/RiskPrioritization.htm.
Guide to auditing web servers. https:
//[download.manageengine.com/products/eventlog/
web-server-auditing- guide-download.pdf.

Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. KOOBE: Towards facilitating exploit generation
of kernel Out-Of-Bounds write vulnerabilities. In 29th
USENIX Security Symposium (USENIX Security 20),
2020.

16

(32]

(33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

M. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink,
N. Michael, S. Gaur, A. Bates, and W. Ul Hassan.
Sok: History is a vast early warning system: Auditing
the provenance of system intrusions. In 2023 2023
IEEE Symposium on Security and Privacy (SP) (SP),
2023.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

Yuan Xiao, Xiaokuan Zhang, Yingian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops: Cross-vm
row hammer attacks and privilege escalation. In 25th
USENIX Security Symposium (USENIX Security 16),
2016.

ftrace - Function Tracer — The Linux Kernel docu-
mentation. https://www .kernel.org/doc/html/v5.0/trace/
ftrace.html.

Xinyang Ge, Ben Niu, and Weidong Cui. Reverse
debugging of kernel failures in deployed systems. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), 2020.

Peng Jiang, Ruizhe Huang, Ding Li, Yao Guo, Xi-
angqun Chen, Jianhai Luan, Yuxin Ren, and Xinwei
Hu. Auditing frameworks need resource isolation: A
systematic study on the super producer threat to system
auditing and its mitigation. In 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

Kangjie Lu and Hong Hu. Where Does It Go? Refining
Indirect-Call Targets with Multi-Layer Type Analysis.
In Proceedings of the 26th ACM Conference on Com-
puter and Communications Security (CCS), 2019.
Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual. Volume 3A: System Programming
Guide, 2016.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. Retrieval-augmented generation for
large language models: A survey, 2024.

Kexin Pei, Weichen Li, Qirui Jin, Shuyang Liu, Scott
Geng, Lorenzo Cavallaro, Junfeng Yang, and Suman
Jana. Exploiting code symmetries for learning program
semantics. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

Chenyuan Yang, Zijie Zhao, and Lingming Zhang.
Kernelgpt: Enhanced kernel fuzzing via large language
models. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2025.
Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin
Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang,
Najmeh Nazari, Han Wang, and Houman Homayoun.
Large language models for code analysis: Do LLMs re-
ally do their job? In 33rd USENIX Security Symposium
(USENIX Security 24), 2024.

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://www.intel.com/content/dam/develop/external/us/en/documents/session1-talk3-844182.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/session1-talk3-844182.pdf
https://docs.tenable.com/cyber-exposure-studies/application-software-security/Content/RiskPrioritization.htm
https://docs.tenable.com/cyber-exposure-studies/application-software-security/Content/RiskPrioritization.htm
https://docs.tenable.com/cyber-exposure-studies/application-software-security/Content/RiskPrioritization.htm
https://download.manageengine.com/products/eventlog/web-server-auditing-guide-download.pdf
https://download.manageengine.com/products/eventlog/web-server-auditing-guide-download.pdf
https://download.manageengine.com/products/eventlog/web-server-auditing-guide-download.pdf
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]
[57]

[58]

Baijun Cheng, Cen Zhang, Kailong Wang, Ling Shi,
Yang Liu, Haoyu Wang, Yao Guo, Ding Li, and Xi-
angqun Chen. Semantic-enhanced indirect call analysis
with large language models. In Proceedings of the 39th
IEEE/ACM International Conference on Automated
Software Engineering, 2024.

Yichen Li, Yun Peng, Yintong Huo, and Michael R.
Lyu. Enhancing llm-based coding tools through native
integration of ide-derived static context. Association
for Computing Machinery, 2024.

Guoren Li, Manu Sridharan, and Zhiyun Qian. Re-
defining Indirect Call Analysis with KallGraph . In
IEEE Symposium on Security and Privacy (SP), 2025.
Tianrou Xia, Hong Hu, and Dinghao Wu. DEEPTYPE:
Refining indirect call targets with strong multi-layer
type analysis. In 33rd USENIX Security Symposium
(USENIX Security 24), 2024.

Linux Virtualization-Based Security = (LVBS).
https://Ipc.events/event/17/contributions/1515/
attachments/1353/2717/LPC_2023_LVBS.pdf.

Intel Jason Chen. Supporting TEE on x86 Client Plat-
forms with pKVM. https://www.youtube.com/watch?v=
EP9ps_h-Wel.

Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process isolation for High-
Throughput data plane libraries. In 20719 USENIX
Annual Technical Conference (USENIX ATC 19), 2019.
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis
Aublin. Exit-less, isolated, and shared access for
virtual machines. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, 2023.

System V ABI. https://wiki.osdev.org/System_V_ABI.
Carter Yagemann, Matthew Pruett, Simon P. Chung,
Kennon Bittick, Brendan Saltaformaggio, and Wenke
Lee. ARCUS: Symbolic root cause analysis of exploits
in production systems. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.
Building Verifiable Trusted Path on Commodity x86
Computers. In 2012 IEEE Symposium on Security and
Privacy (S&P)).

Powerful disassembler library for x86/amd64. https:
//github.com/gdabah/distorm, 2021. Online; Accessed
6 April 2022.

Ollama: Get up and running with large language models.
https://ollama.com/.

Qwen3: Think Deeper, Act
gwenlm.github.io/blog/qwen3/.
Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight Kernel Isolation
with Virtualization and VM Functions. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE),
2020.

Faster. https://

17

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Adil Ahmad, Alex Schultz, Byoungyoung Lee, and
Pedro Fonseca. An Extensible Orchestration and Pro-
tection Framework for Confidential Cloud Computing.
In Proceedings of the 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
Jul 2023.
Bareflank/hypervisor.
hypervisor.
Microsoft Learn. Virtualization-based security (VBS),
2020. https://learn.microsoft.com/en-us/windows-
hardware/design/device-experiences/oem-vbs.
Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin:
Guarding control flows using intel processor trace.
In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2017.

Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo,
and V.N. Venkatakrishnan. Poirot: Aligning attack
behavior with kernel audit records for cyber threat
hunting. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
2019.

Linux test project. https://github.com/linux-test-project/
ltp, 2024. Online; Accessed 9 January 2025.

Bonan Ruan, Jiahao Liu, Chuqi Zhang, and Zhenkai
Liang. Kernjc: Automated vulnerable environment gen-
eration for linux kernel vulnerabilities. In Proceedings
of the 27th International Symposium on Research in
Attacks, Intrusions and Defenses, 2024.

Zhenyu Ning and Fengwei Zhang. Ninja: Towards
transparent tracing and debugging on ARM. In 26th
USENIX Security Symposium (USENIX Security 17),
2017.

Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang,
Yajin Zhou, Chao Zhang, and Haipeng Cai. Ncscope:
hardware-assisted analyzer for native code in android
apps. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis,
2022.

Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers
on Untrusted Operating Systems. In Proceedings of the
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, July 2022.
Zigiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge,
Marcus Peinado, and Andrew Baumann. Core slicing:
closing the gap between leaky confidential VMs and
bare-metal cloud. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
23), 2023.

Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav
Etsion. Do-it-yourself virtual memory translation. In
Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, 2017.

https://github.com/Bareflank/

https://lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_2023_LVBS.pdf
https://lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_2023_LVBS.pdf
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://wiki.osdev.org/System_V_ABI
https://github.com/gdabah/distorm
https://github.com/gdabah/distorm
https://ollama.com/
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
https://github.com/Bareflank/hypervisor
https://github.com/Bareflank/hypervisor
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Ashish Panwar, Reto Achermann, Arkaprava Basu,
Abhishek Bhattacharjee, K. Gopinath, and Jayneel
Gandhi. Fast local page-tables for virtualized numa
servers with vmitosis. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021.
Chugi Zhang, Rahul Priolkar, Yuancheng Jiang, Yuan
Xiao, Mona Vij, Zhenkai Liang, and Adil Ahmad.
Erebor: A drop-in sandbox solution for private data
processing in untrusted confidential virtual machines.
In Proceedings of the Twentieth European Conference
on Computer Systems, 2025.

Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel
Gruss, and Stefan Mangard. Dope: Domain protection
enforcement with pks. In Proceedings of the 39th
Annual Computer Security Applications Conference,
2023.

Yinggang Guo, Zicheng Wang, Weiheng Bai, Qingkai
Zeng, and Kangjie Lu. BULKHEAD: secure, scalable,
and efficient kernel compartmentalization with PKS. In
32nd Annual Network and Distributed System Security
Symposium, NDSS 2025, San Diego, California, USA,
February 24-28, 2025. The Internet Society, 2025.
Memory protection keys for the kernel. https://Iwn.net/
Articles/826554.

Erick Bauman, Gbadebo Ayoade, and Zhiqgiang Lin.
A survey on hypervisor-based monitoring: approaches,
applications, and evolutions. ACM Computing Surveys
(CSUR), 48, 2015.

Srinivas Krishnan, Kevin Z. Snow, and Fabian Monrose.
Trail of bytes: efficient support for forensic analysis. In
Proceedings of the 17th ACM Conference on Computer
and Communications Security, 2010.

Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen,
Rohan Bhutkar, Guruprasad Ganesh, Jia Ma, and Wenbo
Shen. Hypervision across worlds: Real-time kernel
protection from the Arm TrustZone secure world. In
Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS), Scottsdale, Ari-
zona, November 2014.

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz,
John Criswell, and Vikram Adve. Nested kernel: An op-
erating system architecture for intra-kernel privilege sep-
aration. In Proceedings of the 20th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Istanbul,
Turkey, March 2015.

Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi
Liu, Qingni Shen, and Fethi Rabhi. Kasr: A reliable
and practical approach to attack surface reduction
of commodity os kernels. In Research in Attacks,
Intrusions, and Defenses: 21st International Symposium,
RAID 2018, Heraklion, Crete, Greece, September 10-12,
2018, Proceedings 21. Springer, 2018.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-flow integrity principles, imple-
mentations, and applications. ACM Transactions on
Information and System Security (TISSEC), 2009.

18

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu,
Upamanyu Sharma, Ruoyu Wang, and Insu Yun. Rept:
Reverse debugging of failures in deployed software. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping
Chen, and Bing Mao. Pomp: postmortem program
analysis with hardware-enhanced post-crash artifacts.
In USENIX Security Symposium (USENIX), 2017.
Baris Kasikci, Benjamin Schubert, Cristiano Pereira,
Gilles Pokam, and George Candea. Failure sketching:
A technique for automated root cause diagnosis of in-
production failures. In ACM Symposium on Operating
Systems Principles (SOSP), 2015.

Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben
Niu. Lazy diagnosis of in-production concurrency bugs.
In ACM Symposium on Operating Systems Principles
(SOSP), 2017.

Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod
Bhatotia, Pedro Fonseca, and Baris Kasikci. Execution
reconstruction: Harnessing failure reoccurrences for
failure reproduction. In ACM SIGPLAN International
Conference on Programming Language Design and
Implementation (PLDI), 2021.

Carter Yagemann, Simon P. Chung, Brendan Saltafor-
maggio, and Wenke Lee. Automated bug hunting with
data-driven symbolic root cause analysis. In ACM
Conference on Computer and Communications Security
(CCS), 2021.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wor-ner, and Thorsten Holz. Nyx: Greybox
hypervisor fuzzing using fast snapshots and affine types.
In 30th USENIX Security Symposium (USENIX Security
21), 2021.

Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted feedback fuzzing for OS kernels. In
26th USENIX Security Symposium (USENIX Security
17), 2017.

Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen,
Binyu Zang, and Haibing Guan. Transparent and
efficient cfi enforcement with intel processor trace. In
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2017.

Yufei Gu, Qingchuan Zhao, Yingian Zhang, and
Zhigiang Lin. Pt-cfi: Transparent backward-edge control
flow violation detection using intel processor trace. In
ACM Conference on Data and Applications Security
(CODASPY), 2017.

Hong Hu, Chenxiong Qian, Carter Yagemann, Simon
Pak Ho Chung, William R. Harris, Taesoo Kim, and
Wenke Lee. Enforcing unique code target property for
control-flow integrity. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, 2018.

https://lwn.net/Articles/826554
https://lwn.net/Articles/826554

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

The paper introduces APPARE, an auditing framework
for tracing anomalous and unlikely control-flow during a
system call. Traditional audit logs are typically limited to
coarse-grained system call events and thus fail to provide the
visibility needed for investigating advanced kernel control-
flow hijacking. APPARE tackles this challenge by profiling
benign syscall reference behavior and applying semantic
reasoning to distinguish anomalous in-kernel control-flow.
APPARE uses virtualization-based, tamper-resistant tracing
with hardware extensions, ensuring both efficiency and
security in capturing detailed execution traces. The authors
have built a full prototype and performed a comprehensive
evaluation to show that APPARE can effectively log the
in-memory attack control-flow behavior. Importantly, the
framework maintains low performance overhead across
diverse workloads. Overall, APPARE represents a practical
step forward in enhancing forensic analysis capabilities for
modern kernel security.

19

A.2. Scientific Contributions

o Creates a New Tool to Enable Future Science

o Addresses a Long-Known Issue

o Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) APPARE provides strong tamper-resistance through vir-
tualization extensions and selective logging mechanisms
ensures secure and precise tracing.

2) Evaluation demonstrates success on representative work-
loads and 10 real-world CVEs, with clear performance
comparisons against state-of-the-art systems.

3) APPARE maintains low overhead (2.0% slowdown),
while providing fine-grained forensic visibility, making
it both deployable and valuable in real-world settings.

	Introduction
	Motivation
	System and Threat Model
	Approach
	Rationale
	Challenges

	Appare
	Augmented Reference Behavior Analysis
	Dynamic representative workload profiling.
	Static kernel knowledge base extraction.
	LLM-driven code semantics inference.

	Virtualization-Aided Processor Tracing
	EPT-based restricted code view maintenance.
	Trace toggle by view-switching and guard stack.
	Protected trace configurations and regions.

	Implementation
	Security Evaluation
	Settings: Reference Behavior Identification
	Reference Behavior-based Logging Capability
	Exploit Case-Study and Validation
	Threat to Validity

	Performance Evaluation
	Micro-Benchmarks
	Real-World Programs

	Storage Evaluation
	Discussion and Future Work
	Related Work
	Conclusion
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

